Résumé
Une fraction égyptienne, ou unitaire, est une fraction de numérateur égal à un et de dénominateur entier strictement positif. Un problème classique est d'écrire une fraction comme somme de fractions égyptiennes avec des dénominateurs tous différents, que l'on nomme développement en fractions égyptiennes ou plus simplement développement égyptien. Tous les nombres rationnels positifs peuvent être écrits sous cette forme et ce, d'une infinité de façons différentes. Par exemple . Ce type de sommes, utilisé pour exprimer les fractions par les anciens Égyptiens, a continué à faire l'objet d'études lors de la période médiévale et lors de la période contemporaine. En notation mathématique moderne, les développements égyptiens ont été remplacées par les fractions ordinaires et la notation décimale. Néanmoins, ils continuent d'être un objet d'étude en théorie des nombres moderne et en mathématiques récréatives, aussi bien que dans les études historiques modernes des mathématiques anciennes. Cet article résume ce qui est connu à propos des fractions égyptiennes à la fois anciennes et modernes. Pour les détails des sujets traités ici, voir les articles liés. Numération égyptienne Cette propriété a permis aux anciens Égyptiens d'exprimer simplement tous les nombres rationnels. N'importe quelle fraction que nous écrivons avec un numérateur non unitaire était écrite par les anciens Égyptiens comme une somme de fractions unitaires sans que deux de ces dénominateurs soient les mêmes. Le hiéroglyphe en forme de bouche ouverte qui signifie partie, était utilisé pour représenter le numérateur 1 : Les fractions étaient écrites avec ce hiéroglyphe dessus et le dénominateur en dessous. Ainsi 1/3 était écrit : Il y avait des symboles spéciaux pour les fractions les plus courantes comme 1/2 et pour deux fractions non unitaires 2/3 et 3/4 : Si le dénominateur devenait trop large, la « bouche » était placée juste au début du dénominateur : vignette|Le papyrus Rhind.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.