Publication

Kirigami Design and Modeling for Strong, Lightweight Metamaterials

Jamie Paik, Hongying Zhang
2022
Journal paper
Abstract

Kirigami is the art of paper cutting, and it is emerging as an elegant design and manufacturing solution in mechanical metamaterials. Currently, the majority of kirigami designs focus on shape-morphing, but there is little attention on the remarkable mechanical properties they can produce: high strength to weight ratio where they can bear thousands of times of their own weight. This paper proposes a kirigami-based, strong, yet lightweight metamaterial, which is created by folding pop-up and pop-down from a checkerboard pattern with blocks. To transform the kirigami metamaterial into arbitrary objects, the challenge lies in how to automatically design the kirigami folding to approximate the outline of the object. Herein, a computational model that is based on deploying discretized objects onto a planar sheet is proposed. Additionally, to achieve high strength, a glue-free connector that can lock the collocated cuts in the folded configuration is designed. The standard compression tests show that the kirigami metamaterial, weighing 12.05 g, can carry 346.4 N payloads. Meanwhile, six examples of curved surfaces are prototyped to verify the shape transforming capability of the proposed kirigami metamaterial. This study paves the way towards using the kirigami technique for weight reduction in industrial applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (28)
Metamaterial
A metamaterial (from the Greek word μετά meta, meaning "beyond" or "after", and the Latin word materia, meaning "matter" or "material") is any material engineered to have a property that is rarely observed in naturally occurring materials. They are made from assemblies of multiple elements fashioned from composite materials such as metals and plastics. These materials are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence.
Acoustic metamaterial
An acoustic metamaterial, sonic crystal, or phononic crystal is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids (crystal lattices). Sound wave control is accomplished through manipulating parameters such as the bulk modulus β, density ρ, and chirality. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic resonator.
History of metamaterials
The history of metamaterials begins with artificial dielectrics in microwave engineering as it developed just after World War II. Yet, there are seminal explorations of artificial materials for manipulating electromagnetic waves at the end of the 19th century. Hence, the history of metamaterials is essentially a history of developing certain types of manufactured materials, which interact at radio frequency, microwave, and later optical frequencies.
Show more
Related publications (34)

Enabling Wide Bandwidth in Substrate-Integrated Waveguide Slot Antennas by Using Low-Index Metamaterials

Romain Christophe Rémy Fleury, Amir Jafargholi, Jalaledin Tayebpour

This paper presents a solution to overcome the inherently limited bandwidth of substrate-integrated waveguide (SIW) slot antennas. It is analytically shown that by decreasing the permittivity of a dielectric loaded slot antenna, the resulting bandwidth inc ...
2024

Effect of mechanical nonlinearity on the electromagnetic response of a microwave tunable metamaterial

Romain Christophe Rémy Fleury, Bakhtiyar Orazbayev, Rayehe Karimi Mahabadi, Taha Goudarzi

Tunable metamaterials functionalities change in response to external stimuli. Mechanical deformation is known to be an efficient approach to tune the electromagnetic response of a deformable metamaterial. However, in the case of large mechanical deformatio ...
IOP Publishing Ltd2022

Spectral analysis for transmission eigenvalue problems with and without the complementing conditions

Jean Louis-Alexandre Fornerod

The interior transmission eigenvalue problem is a system of partial differential equations equipped with Cauchy data on the boundary: the transmission conditions. This problem appears in the inverse scattering theory for inhomogeneous media when, for some ...
EPFL2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.