Summary
The standard enthalpy of reaction (denoted ) for a chemical reaction is the difference between total reactant and total product molar enthalpies, calculated for substances in their standard states. This can in turn be used to predict the total chemical bond energy liberated or bound during reaction, as long as the enthalpy of mixing is also accounted for. For a generic chemical reaction the standard enthalpy of reaction is related to the standard enthalpy of formation values of the reactants and products by the following equation: In this equation, and are the stoichiometric coefficients of each product and reactant. The standard enthalpy of formation, which has been determined for a vast number of substances, is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states. Standard states can be defined at any temperature and pressure, so both the standard temperature and pressure must always be specified. Most values of standard thermochemical data are tabulated at either (25°C, 1 bar) or (25°C, 1 atm). For ions in aqueous solution, the standard state is often chosen such that the aqueous H+ ion at a concentration of exactly 1 mole/liter has a standard enthalpy of formation equal to zero, which makes possible the tabulation of standard enthalpies for cations and anions at the same standard concentration. This convention is consistent with the use of the standard hydrogen electrode in the field of electrochemistry. However, there are other common choices in certain fields, including a standard concentration for H+ of exactly 1 mole/(kg solvent) (widely used in chemical engineering) and mole/L (used in the field of biochemistry). For this reason it is important to note which standard concentration value is being used when consulting tables of enthalpies of formation. Two initial thermodynamic systems, each isolated in their separate states of internal thermodynamic equilibrium, can, by a thermodynamic operation, be coalesced into a single new final isolated thermodynamic system.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (15)
MSE-204: Thermodynamics for materials science
This course establishes the basic concepts of thermodynamics and defines the main state functions. The concepts are then applied to the study of phase diagrams of various systems.
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
ChE-201: Introduction to chemical engineering
Introduction to Chemical Engineering is an introductory course that provides a basic overview of the chemical engineering field. It addresses the formulation and solution of material and energy balanc
Show more
Related lectures (132)
Energy Balances on Reactive Systems
Explores energy balance in reactive processes, enthalpy of reaction, and methods for solving energy balances.
Chemical Thermodynamics: State Functions and Enthalpy
Covers chemical thermodynamics, state functions, enthalpy, spontaneous processes, and limitations of the first law.
Batteries, Fuel Cells and Electrolysis: Efficiency
Explores fuel cells types, efficiency calculations, chemical energy conversion, and Nernst voltage relationships.
Show more
Related publications (88)

Microkinetic Molecular Volcano Plots for Enhanced Catalyst Selectivity and Activity Predictions

Matthew Wodrich, Shubhajit Das, Rubén Laplaza Solanas

Molecular volcano plots, which facilitate the rapid prediction of the activity and selectivity of prospective catalysts, have emerged as powerful tools for computational catalysis. Here, we integrate microkinetic modeling into the volcano plot framework to ...
Amer Chemical Soc2024

HCN production from formaldehyde during the selective catalytic reduction of NOx with NH3 over V2O5/WO3-TiO2

Davide Ferri, Oliver Kröcher, Rob Jeremiah G. Nuguid

Raw exhaust gases may contain notable levels of formaldehyde that can negatively impact the efficiency of after -treatment systems. In the selective catalytic reduction (SCR) of NOx over V2O5/WO3-TiO2, formaldehyde was found to react with NH3 to produce HC ...
ELSEVIER2021
Show more
Related concepts (11)
Hess's law
Hess's law of constant heat summation, also known simply as Hess' law, is a relationship in physical chemistry named after Germain Hess, a Swiss-born Russian chemist and physician who published it in 1840. The law states that the total enthalpy change during the complete course of a chemical reaction is independent of the sequence of steps taken. Hess's law is now understood as an expression of the fact that the enthalpy of a chemical process is independent of the path taken from the initial to the final state (i.
Standard enthalpy of formation
In chemistry and thermodynamics, the standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements in their reference state, with all substances in their standard states. The standard pressure value p^⦵ = 10^5 Pa (= 100 kPa = 1 bar) is recommended by IUPAC, although prior to 1982 the value 1.00 atm (101.325 kPa) was used. There is no standard temperature. Its symbol is Δ_fH^⦵.
Ideal solution
In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law, respectively, and the activity coefficient (which measures deviation from ideality) is equal to one for each component.
Show more
Related MOOCs (2)
Thermodynamics
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Thermodynamics
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P