Related courses (9)
PHYS-702: Advanced Quantum Field Theory
The course builds on the course QFT1 and QFT2 and develops in parallel to the course on Gauge Theories and the SM.
PHYS-470: Nonlinear optics for quantum technologies
This course provides the fundamental knowledge and theoretical tools needed to treat nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics. It presents applica
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
MICRO-410: Classical and quantum photonic transducers
This course gives an introduction to transducers by both considering fundamental principles and their application in classical and quantum systems. The course builds up on the fundamental concept of c
PHYS-453: Quantum electrodynamics and quantum optics
This course develops the quantum theory of electromagnetic radiation from the principles of quantum electrodynamics. It will cover historic developments (coherent states, squeezed states, quantum theo
PHYS-425: Quantum physics III
To introduce several advanced topics in quantum physics, including semiclassical approximation, path integral, scattering theory, and relativistic quantum mechanics
CH-453: Molecular quantum dynamics
The course covers several exact, approximate, and numerical methods to solve the time-dependent molecular Schrödinger equation, and applications including calculations of molecular electronic spectra.
PHYS-550: Quantum information theory
After recapping the basics of quantum theory from an information theoretic perspective, we will cover more advanced topics in quantum information theory. This includes introducing measures of quantum
PHYS-758: Advanced Course on Quantum Communication
The aim of this doctoral course by Nicolas Sangouard is to lay the theoretical groundwork that is needed for students to understand how to take advantage of quantum effects for communication technolog

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.