In organic chemistry, a carbonate ester (organic carbonate or organocarbonate) is an ester of carbonic acid. This functional group consists of a carbonyl group flanked by two alkoxy groups. The general structure of these carbonates is and they are related to esters (), ethers () and also to the inorganic carbonates.
Monomers of polycarbonate (e.g. Makrolon or Lexan) are linked by carbonate groups. These polycarbonates are used in eyeglass lenses, compact discs, and bulletproof glass. Small carbonate esters like dimethyl carbonate, ethylene carbonate, propylene carbonate are used as solvents, dimethyl carbonate is also a mild methylating agent.
Carbonate esters have planar OC(OC)2 cores, which confers rigidity. The unique O=C bond is short (1.173 Å in the depicted example), while the C-O bonds are more ether-like (the bond distances of 1.326 Å for the example depicted).
Carbonate esters can be divided into three structural classes: acyclic, cyclic, and polymeric. The first and general case is the acyclic carbonate group. Organic substituents can be identical or not. Both aliphatic or aromatic substituents are known, they are called dialkyl or diaryl carbonates, respectively. The simplest members of these classes are dimethyl carbonate and diphenyl carbonate.
Alternatively, the carbonate groups can be linked by a 2- or 3-carbon bridge, forming cyclic compounds such as ethylene carbonate and trimethylene carbonate. The bridging compound can also have substituents, e.g. CH3 for propylene carbonate. Instead of terminal alkyl or aryl groups, two carbonate groups can be linked by an aliphatic or aromatic bifunctional group.
A third family of carbonates are the polymers, such as poly(propylene carbonate) and poly(bisphenol A carbonate) (e.g. Makrolon or Lexan).
Organic carbonates are not prepared from inorganic carbonate salts.
Two main routes to carbonate esters are practiced: the reaction of an alcohol (or phenol) with phosgene (phosgenation), and the reaction of an alcohol with carbon monoxide and an oxidizer (oxidative carbonylation).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Propylene carbonate (often abbreviated PC) is an organic compound with the formula C4H6O3. It is a cyclic carbonate ester derived from propylene glycol. This colorless and odorless liquid is useful as a polar, aprotic solvent. Propylene carbonate is chiral, but is used as the racemic mixture in most contexts. Although many organic carbonates are produced using phosgene, propylene and ethylene carbonates are exceptions.
Propylene oxide is an acutely toxic and carcinogenic organic compound with the molecular formula CH3CHCH2O. This colourless volatile liquid with an odour similar to ether, is produced on a large scale industrially. Its major application is its use for the production of polyether polyols for use in making polyurethane plastics. It is a chiral epoxide, although it is commonly used as a racemic mixture. This compound is sometimes called 1,2-propylene oxide to distinguish it from its isomer 1,3-propylene oxide, better known as oxetane.
A Grignard reagent or Grignard compound is a chemical compound with the general formula , where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride and phenylmagnesium bromide . They are a subclass of the organomagnesium compounds. Grignard compounds are popular reagents in organic synthesis for creating new carbon-carbon bonds. For example, when reacted with another halogenated compound in the presence of a suitable catalyst, they typically yield and the magnesium halide as a byproduct; and the latter is insoluble in the solvents normally used.
Covers coordination numbers, common ligands, and preferred geometries in coordination chemistry, emphasizing the spatial distribution between ligands and the role of d⁸ electron configurations.
Bicyclic carbocycles containing a high fraction of Csp3 have become highly attractive synthetic targets because of the multiple applications they have found in medicinal chemistry. The formal cycloaddition of bicyclobutanes (BCBs) with two- or three-atom p ...
Polymers play a central role in shaping our world across various fields, but their heavy reliance on petrochemicals poses climate change, environmental and health risks. To address and alleviate these issues, transitioning to sustainable polymers, sourced ...
Precipitation of (bi)carbonate salts during the electrochemical CO2 reduction (CO2RR) has been identified as a major cause of degradation and one of the main challenges to be overcome before implementing this technology on the industrial scale. Recently, t ...