Propylene oxide is an acutely toxic and carcinogenic organic compound with the molecular formula CH3CHCH2O. This colourless volatile liquid with an odour similar to ether, is produced on a large scale industrially. Its major application is its use for the production of polyether polyols for use in making polyurethane plastics. It is a chiral epoxide, although it is commonly used as a racemic mixture. This compound is sometimes called 1,2-propylene oxide to distinguish it from its isomer 1,3-propylene oxide, better known as oxetane. Industrial production of propylene oxide starts from propylene. Two general approaches are employed, one involving hydrochlorination and the other involving oxidation. In 2005, about half of the world production was through chlorohydrin technology and one half via oxidation routes. The latter approach is growing in importance. The traditional route proceeds via the conversion of propene to propylene chlorohydrin according to the following simplified scheme: The mixture of 1-chloro-2-propanol and 2-chloro-1-propanol is then dehydrochlorinated. For example: Lime (calcium hydroxide) is often used to absorb the HCl. The other general route to propylene oxide involves oxidation of propylene with an organic peroxide. The reaction follows this stoichiometry: CH3CH=CH2 + RO2H → CH3CHCH2O + ROH The process is practiced with four hydroperoxides: In the Halcon process, t-Butyl hydroperoxide derived from oxygenation of isobutane, which affords t-butanol. This coproduct can be dehydrated to isobutene, converted to MTBE, an additive for gasoline. Ethylbenzene hydroperoxide, derived from oxygenation of ethylbenzene, which affords 1-phenylethanol. This coproduct can be dehydrated to give styrene, a useful monomer. Cumene hydroperoxide derived from oxygenation of cumene (isopropylbenzene), which affords cumyl alcohol. Via dehydration and hydrogenation this coproduct can be recycled back to cumene. This technology was commercialized by Sumitomo Chemical.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MSE-431: Physical chemistry of polymeric materials
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
Related lectures (15)
Crystallization and Rubber Elasticity
Explores crystallization kinetics, rubber elasticity, and network formation through crosslinking and entropy-driven processes.
Catalysis: Mechanisms and Case Studies
Covers the fundamentals of catalysis and studies hydrogenation and carbonylation reactions in detail.
Life-cycle Impacts of Polymers
Explores impact categories, polymer comparison, and environmental aspects in life cycle assessment.
Show more
Related publications (40)

Biobased surfactant

Jeremy Luterbacher, Songlan Sun, Stefania Bertella, Anastasiia Komarova

The present invention relates to a compound of the general formula (I), (II) and (III), more specifically of formula (Ia), (Ib), (Ic)wherein R11 and R12 or R21 and R22 or R31 and R32 are both hydrogen or form together with CHR50 a cyclic moiety or one of R ...
2024

Biobased surfactant

Jeremy Luterbacher, Songlan Sun, Stefania Bertella, Anastasiia Komarova

The present invention relates to a compound of the general formula (I), and (II)wherein one of R11 and R12 is hydrogen and the other is -CH2-R70, and one of R13 and R14 is hydrogen and the other is -CH2-R71, or wherein one of R11 and R12 is hydrogen and th ...
2024

MXene Inks for High-Throughput Printing of Electronics

Jakob Heier, René Uwe Schneider, Sina Abdolhosseinzadeh, Mohammad Jafarpour

MXene inks are promising alternatives for conventional conductive inks in printing electronics. However, the formulation of MXene inks is challenging due to the physicochemical properties of the few solvents in which MXenes can be dispersed. Furthermore, c ...
Wiley2024
Show more
Related units (1)
Related concepts (7)
Carbonate ester
In organic chemistry, a carbonate ester (organic carbonate or organocarbonate) is an ester of carbonic acid. This functional group consists of a carbonyl group flanked by two alkoxy groups. The general structure of these carbonates is and they are related to esters (), ethers () and also to the inorganic carbonates. Monomers of polycarbonate (e.g. Makrolon or Lexan) are linked by carbonate groups. These polycarbonates are used in eyeglass lenses, compact discs, and bulletproof glass.
Isomer
In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism refers to the existence or possibility of isomers. Isomers do not necessarily share similar chemical or physical properties. Two main forms of isomerism are structural or constitutional isomerism, in which bonds between the atoms differ; and stereoisomerism or spatial isomerism, in which the bonds are the same but the relative positions of the atoms differ.
Acetone
Acetone (2-propanone or dimethyl ketone), is an organic compound with the formula . It is the simplest and smallest ketone (). It is a colorless, highly volatile and flammable liquid with a characteristic pungent odor. Acetone is miscible with water and serves as an important organic solvent in industry, home, and laboratory. About 6.7 million tonnes were produced worldwide in 2010, mainly for use as a solvent and for production of methyl methacrylate and bisphenol A, which are precursors to widely-used plastics.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.