Concept

Gravitational wave background

Summary
The gravitational wave background (also GWB and stochastic background) is a random background of gravitational waves permeating the Universe, which is detectable by gravitational-wave experiments, like pulsar timing arrays. The signal may be intrinsically random, like from stochastic processes in the early Universe, or may be produced by an incoherent superposition of a large number of weak independent unresolved gravitational-wave sources, like supermassive black-hole binaries. Detecting the gravitational wave background can provide information that is inaccessible by any other means, about astrophysical source population, like hypothetical ancient supermassive black-hole binaries, and early Universe processes, like hypothetical primordial inflation and cosmic strings. Several potential sources for the background are hypothesized across various frequency bands of interest, with each source producing a background with different statistical properties. The sources of the stochastic background can be broadly divided into two categories: cosmological sources, and astrophysical sources. Cosmological backgrounds may arise from several early universe sources. Some examples of these primordial sources include time-varying inflationary scalar fields in the early universe, "preheating" mechanisms after inflation involving energy transfer from inflaton particles to regular matter, cosmological phase transitions in the early universe (such as the electroweak phase transition), cosmic strings, etc. While these sources are more hypothetical, a detection of a primordial gravitational wave background from them would be a major discovery of new physics and would have a profound impact on early-universe cosmology and on high-energy physics. An astrophysical background is produced by the confused noise of many weak, independent, and unresolved astrophysical sources. For instance the astrophysical background from stellar mass binary black-hole mergers is expected to be a key source of the stochastic background for the current generation of ground based gravitational-wave detectors.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
PHYS-643: Astrophysics VI : The variable Universe
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
PHYS-428: Relativity and cosmology II
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory and discusses major
Show more
Related publications (69)