The Fifth Generation Computer Systems (FGCS) was a 10-year initiative begun in 1982 by Japan's Ministry of International Trade and Industry (MITI) to create computers using massively parallel computing and logic programming. It aimed to create an "epoch-making computer" with supercomputer-like performance and to provide a platform for future developments in artificial intelligence. FGCS was ahead of its time, and its excessive ambitions led to commercial failure. However, on a theoretical level, the project spurred the development of concurrent logic programming. The term "fifth generation" was intended to convey the system as being advanced: In the history of computing hardware, there were four "generations" of computers. Computers using vacuum tubes were called the first generation; transistors and diodes, the second; integrated circuits, the third; and those using microprocessors, the fourth. Whereas previous computer generations had focused on increasing the number of logic elements in a single CPU, the fifth generation, it was widely believed at the time, would instead turn to massive numbers of CPUs to gain performance. In the late 1960s until the early 1970s, there was much talk about "generations" of computer hardware, then usually organized into three generations. First generation: Thermionic vacuum tubes. Mid-1940s. IBM pioneered the arrangement of vacuum tubes in pluggable modules. The IBM 650 was a first-generation computer. Second generation: Transistors. 1956. The era of miniaturization begins. Transistors are much smaller than vacuum tubes, draw less power, and generate less heat. Discrete transistors are soldered to circuit boards, with interconnections accomplished by stencil-screened conductive patterns on the reverse side. The IBM 7090 was a second-generation computer. Third generation: Integrated circuits (silicon chips containing multiple transistors). 1964. A pioneering example is the ACPX module used in the IBM 360/91, which, by stacking layers of silicon over a ceramic substrate, accommodated over 20 transistors per chip; the chips could be packed together onto a circuit board to achieve unprecedented logic densities.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.