En mathématiques, plus précisément en théorie des représentations, une représentation projective d'un groupe sur un espace vectoriel est un homomorphisme du groupe dans le groupe projectif linéaire . Soit un groupe, un corps et un -espace vectoriel. désigne le groupe général linéaire de . On note le centre de ; il est isomorphe à . est par définition le groupe quotient : . Il existe deux définitions équivalentes d'une représentation projective de sur : un morphisme ; une application telle qu'il existe une fonction , vérifiant : . Une représentation linéaire d'un groupe donne automatiquement une représentation projective en la composant avec le morphisme de projection : La question qui se présente alors naturellement consiste à déterminer sous quelles conditions il est possible de relever une représentation projective en une représentation linéaire. En général, il n'existe pas de relèvement d'une représentation projective ρ: G → PGL(V) en une représentation linéaire G → GL(V) et l'obstruction à ce relèvement peut être caractérisée en termes de la cohomologie du groupe, comme il est expliqué plus bas. En revanche, il est toujours possible de relever une représentation projective de G en une représentation linéaire d'une extension centrale de G. En effet, notons que est une extension centrale de PGL(V) par le groupe des unités k* du corps de base. En posant , on obtient un sous-groupe de et la suite exacte courte : définit une extension centrale de . La restriction à de la seconde projection de est alors une représentation linéaire qui relève . Considérons le diagramme : Étant donnés et tels que , et , on obtient : Il existe donc tel que . Il s'ensuit que doit satisfaire la condition : ce qui en fait un 2-cocycle ou multiplicateur de Schur. Deux tels cocycles sont en fait cohomologues et définissent donc la même classe dans H2(G, k*). La non-trivialité de cette classe est l'obstruction au relèvement de la représentation projective : en une représentation linéaire. Cette classe n'est pas nécessairement triviale.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.