In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the L1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration.
In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables.
Lebesgue's dominated convergence theorem. Let be a sequence of complex-valued measurable functions on a measure space . Suppose that the sequence converges pointwise to a function and is dominated by some integrable function in the sense that
for all numbers n in the index set of the sequence and all points .
Then f is integrable (in the Lebesgue sense) and
which also implies
Remark 1. The statement "g is integrable" means that measurable function is Lebesgue integrable; i.e.
Remark 2. The convergence of the sequence and domination by can be relaxed to hold only μ-almost everywhere provided the measure space (S, Σ, μ) is complete or is chosen as a measurable function which agrees μ-almost everywhere with the μ-almost everywhere existing pointwise limit. (These precautions are necessary, because otherwise there might exist a non-measurable subset of a μ-null set N ∈ Σ, hence might not be measurable.)
Remark 3. If , the condition that there is a dominating integrable function can be relaxed to uniform integrability of the sequence (fn), see Vitali convergence theorem.
Remark 4. While is Lebesgue integrable, it is not in general Riemann integrable. For example, take fn to be defined in so that it is one at rational numbers and zero everywhere else (on the irrationals). The series (fn) converges pointwise to 0, so f is identically zero, but is not Riemann integrable, since its image in every finite interval is and thus the upper and lower Darboux integrals are 1 and 0, respectively.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Dans ce cours on définira et étudiera la notion de mesure et d'intégrale contre une mesure dans un cadre général, généralisant ce qui a été fait en Analyse IV dans le cas réel.
On verra aussi quelques
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X-axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.
In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou. Fatou's lemma can be used to prove the Fatou–Lebesgue theorem and Lebesgue's dominated convergence theorem. In what follows, denotes the -algebra of Borel sets on . Fatou's lemma. Given a measure space and a set let be a sequence of -measurable non-negative functions .
In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences (sequences that are non-decreasing or non-increasing) that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.
Despite the widespread empirical success of ResNet, the generalization properties of deep ResNet are rarely explored beyond the lazy training regime. In this work, we investigate scaled ResNet in the limit of infinitely deep and wide neural networks, of wh ...
2024
, ,
The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mix ...
SPRINGER2023
,
Mixed-precision algorithms combine low-and high-precision computations in order to benefit from the performance gains of reduced-precision without sacrificing accuracy. In this work, we design mixed-precision Runge-Kutta-Chebyshev (RKC) methods, where high ...