Publication

A mixed precision LOBPCG algorithm

Abstract

The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mixed precision variant of LOBPCG that uses a (sparse) Cholesky factorization of A computed in lower precision as the preconditioner. To further enhance performance, a mixed precision orthogonalization strategy is proposed. To analyze the impact of reducing precision in the preconditioner on performance, we carry out a rounding error and convergence analysis of PINVIT, a simplified variant of LOBPCG. Our theoretical results predict and our numerical experiments confirm that the impact on convergence remains marginal. In practice, our mixed precision LOBPCG algorithm typically reduces the computation time by a factor of 1.4-2.0 on both CPUs and GPUs.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.