Summary
In cryptography, a Feistel cipher (also known as Luby–Rackoff block cipher) is a symmetric structure used in the construction of block ciphers, named after the German-born physicist and cryptographer Horst Feistel, who did pioneering research while working for IBM; it is also commonly known as a Feistel network. A large proportion of block ciphers use the scheme, including the US Data Encryption Standard, the Soviet/Russian GOST and the more recent Blowfish and Twofish ciphers. In a Feistel cipher, encryption and decryption are very similar operations, and both consist of iteratively running a function called a "round function" a fixed number of times. Many modern symmetric block ciphers are based on Feistel networks. Feistel networks were first seen commercially in IBM's Lucifer cipher, designed by Horst Feistel and Don Coppersmith in 1973. Feistel networks gained respectability when the U.S. Federal Government adopted the DES (a cipher based on Lucifer, with changes made by the NSA) in 1976. Like other components of the DES, the iterative nature of the Feistel construction makes implementing the cryptosystem in hardware easier (particularly on the hardware available at the time of DES's design). A Feistel network uses a round function, a function which takes two inputs - a data block and a subkey - and returns one output of the same size as the data block. In each round, the round function is run on half of the data to be encrypted, and its output is XORed with the other half of the data. This is repeated a fixed number of times, and the final output is the encrypted data. An important advantage of Feistel networks compared to other cipher designs such as substitution–permutation networks is that the entire operation is guaranteed to be invertible (that is, encrypted data can be decrypted), even if the round function is not itself invertible. The round function can be made arbitrarily complicated, since it does not need to be designed to be invertible.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.