Concept

Essential infimum and essential supremum

In mathematics, the concepts of essential infimum and essential supremum are related to the notions of infimum and supremum, but adapted to measure theory and functional analysis, where one often deals with statements that are not valid for all elements in a set, but rather almost everywhere, that is, except on a set of measure zero. While the exact definition is not immediately straightforward, intuitively the essential supremum of a function is the smallest value that is greater than or equal to the function values everywhere while ignoring what the function does at a set of points of measure zero. For example, if one takes the function that is equal to zero everywhere except at where then the supremum of the function equals one. However, its essential supremum is zero because we are allowed to ignore what the function does at the single point where is peculiar. The essential infimum is defined in a similar way. As is often the case in measure-theoretic questions, the definition of essential supremum and infimum does not start by asking what a function does at points (that is, the image of ), but rather by asking for the set of points where equals a specific value (that is, the of under ). Let be a real valued function defined on a set The supremum of a function is characterized by the following property: for all and if for some we have for all then More concretely, a real number is called an upper bound for if for all that is, if the set is empty. Let be the set of upper bounds of and define the infimum of the empty set by Then the supremum of is if the set of upper bounds is nonempty, and otherwise. Now assume in addition that is a measure space and, for simplicity, assume that the function is measurable. Similar to the supremum, the essential supremum of a function is characterised by the following property: for -almost all and if for some we have for -almost all then More concretely, a number is called an of if the measurable set is a set of -measure zero, That is, if for -almost all in Let be the set of essential upper bounds.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
MATH-101(en): Analysis I (English)
We study the fundamental concepts of analysis, calculus and the integral of real-valued functions of a real variable.
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MGT-418: Convex optimization
This course introduces the theory and application of modern convex optimization from an engineering perspective.
Show more
Related lectures (40)
Math-101(en) / Min/Max, Inf/Sup
Covers minimum, maximum, infimum, and supremum concepts in real numbers with examples and proofs.
Real Numbers: Properties and Formulas
Explores real numbers, including supremum, infimum, maximum, and minimum properties.
Analysis I: Lecture 4 Repeated Hour 1
Explains how to find supremum and infimum of a set with examples.
Show more
Related publications (5)

Understanding and Mitigating Latency Variability of Latency-Critical Applications

Mia Primorac

A major theme of IT in the past decade has been the shift from on-premise hardware to cloud computing. Running a service in the public cloud is practical, because a large number of resources can be bought on-demand, but this shift comes with its own set of ...
EPFL2020

Quasiconvexity and Relaxation in Optimal Transportation of Closed Differential Forms

Bernard Dacorogna

This manuscript extends the relaxation theory from nonlinear elasticity to electromagnetism and to actions defined on paths of differential forms. The introduction of a gauge allows for a reformulation of the notion of quasiconvexity in Bandyopadhyay et al ...
SPRINGER2019

Expressiveness And Closure Properties For Quantitative Languages

Laurent Doyen

Weighted automata are nondeterministic automata with numerical weights on transitions. They can define quantitative languages L that assign to each word w a real number L(w). In the case of infinite words, the value of a run is naturally computed as the ma ...
2010
Show more
Related concepts (2)
Lp space
DISPLAYTITLE:Lp space In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces.
Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.