**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Lp space

Summary

DISPLAYTITLE:Lp space
In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz .
Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines.
In statistics, measures of central tendency and statistical dispersion, such as the mean, median, and standard deviation, are defined in terms of metrics, and measures of central tendency can be characterized as solutions to variational problems.
In penalized regression, "L1 penalty" and "L2 penalty" refer to penalizing either the norm of a solution's vector of parameter values (i.e. the sum of its absolute values), or its norm (its Euclidean length). Techniques which use an L1 penalty, like LASSO, encourage solutions where many parameters are zero. Techniques which use an L2 penalty, like ridge regression, encourage solutions where most parameter values are small. Elastic net regularization uses a penalty term that is a combination of the norm and the norm of the parameter vector.
The Fourier transform for the real line (or, for periodic functions, see Fourier series), maps to (or to ) respectively, where and This is a consequence of the Riesz–Thorin interpolation theorem, and is made precise with the Hausdorff–Young inequality.
By contrast, if the Fourier transform does not map into
Square-integrable function
Hilbert spaces are central to many applications, from quantum mechanics to stochastic calculus. The spaces and are both Hilbert spaces. In fact, by choosing a Hilbert basis i.e.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (18)

Loading

Loading

Loading

Related people (3)

Related units

No results

Related concepts (174)

Hilbert space

In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

Lp space

DISPLAYTITLE:Lp space In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces.

Weak topology

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space (such as a normed vector space) with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis. One may call subsets of a topological vector space weakly closed (respectively, weakly compact, etc.

Related courses (63)

MATH-432: Probability theory

The course is based on Durrett's text book
Probability: Theory and Examples.

It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.

It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

MATH-303: Measure and integration

On introduit la théorie abstraite des espaces de mesure et on traite rigoureusement la mesure de Lebesgue et ensuite l'intégrale de Lebesgue.

Related lectures (488)

Interpolation Spaces

Explores interpolation spaces in Banach spaces, emphasizing real continuous interpolation spaces and the K-method.

Analysis IV: Le Spaces

Introduces Le spaces, measurable functions, Holder inequality, and LP space properties.

Linear Algebra in Dirac Notation

Covers linear algebra in Dirac notation, focusing on vector spaces and quantum bits.

Related MOOCs (9)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

We show that isogeometric Galerkin discretizations of eigenvalue problems related to the Laplace operator subject to any standard type of homogeneous boundary conditions have no outliers in certain op

We generalize the fixed-point property for discrete groups acting on convex cones given by Monod in [23] to topological groups. At first, we focus on describing this fixed-point property from a functi

In this thesis, we study the homotopical relations of 2-categories, double categories, and their infinity-analogues. For this, we construct homotopy theories for the objects of interest, and show that