Related concepts (16)
Adjoint functors
In mathematics, specifically , adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e.
Category of groups
In mathematics, the Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a . The study of this category is known as group theory. There are two forgetful functors from Grp, M: Grp → Mon from groups to monoids and U: Grp → Set from groups to . M has two adjoints: one right, I: Mon→Grp, and one left, K: Mon→Grp. I: Mon→Grp is the functor sending every monoid to the submonoid of invertible elements and K: Mon→Grp the functor sending every monoid to the Grothendieck group of that monoid.
Universal algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study. Algebraic structure In universal algebra, an algebra (or algebraic structure) is a set A together with a collection of operations on A. An n-ary operation on A is a function that takes n elements of A and returns a single element of A.
Galois connection
In mathematics, especially in order theory, a Galois connection is a particular correspondence (typically) between two partially ordered sets (posets). Galois connections find applications in various mathematical theories. They generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields, discovered by the French mathematician Évariste Galois. A Galois connection can also be defined on preordered sets or classes; this article presents the common case of posets.
Algebraic structure
In mathematics, an algebraic structure consists of a nonempty set A (called the underlying set, carrier set or domain), a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures.
Free group
In mathematics, the free group FS over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms (e.g. st = suu−1t, but s ≠ t−1 for s,t,u ∈ S). The members of S are called generators of FS, and the number of generators is the rank of the free group. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in exactly one way as a product of finitely many elements of S and their inverses (disregarding trivial variations such as st = suu−1t).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.