Majority judgmentMajority judgment (MJ) is a single-winner voting system proposed in 2010 by Michel Balinski and Rida Laraki. It uses a highest median rule, i.e., a cardinal voting system that elects the candidate with the highest median rating. Unlike other voting methods, MJ guarantees that the winner between three or more candidates will be the candidate who had received an absolute majority of the highest grades given by all the voters.
Ranked votingThe term ranked voting, also known as preferential voting or ranked choice voting, pertains to any voting system where voters use a rank to order candidates or options—in a sequence from first, second, third, and onwards—on their ballots. Ranked voting systems vary based on the ballot marking process, how preferences are tabulated and counted, the number of seats available for election, and whether voters are allowed to rank candidates equally.
Condorcet paradoxThe Condorcet paradox (also known as the voting paradox or the paradox of voting) in social choice theory is a situation noted by the Marquis de Condorcet in the late 18th century, in which collective preferences can be cyclic, even if the preferences of individual voters are not cyclic. This is paradoxical, because it means that majority wishes can be in conflict with each other: Suppose majorities prefer, for example, candidate A over B, B over C, and yet C over A.
Monotonicity criterionThe monotonicity criterion is a voting system criterion used to evaluate both single and multiple winner ranked voting systems. A ranked voting system is monotonic if it is neither possible to prevent the election of a candidate by ranking them higher on some of the ballots, nor possible to elect an otherwise unelected candidate by ranking them lower on some of the ballots (while nothing else is altered on any ballot). That is to say, in single winner elections no winner is harmed by up-ranking and no loser is helped by down-ranking.
Majority criterionThe majority criterion is a single-winner voting system criterion, used to compare such systems. The criterion states that "if one candidate is ranked first by a majority (more than 50%) of voters, then that candidate must win". Some methods that comply with this criterion include any Condorcet method, instant-runoff voting, Bucklin voting, and plurality voting.
Score votingScore voting or range voting is an electoral system for single-seat elections, in which voters give each candidate a score, the scores are added (or averaged), and the candidate with the highest total is elected. It has been described by various other names including evaluative voting, utilitarian voting, interval measure voting, the point system, ratings summation, 0-99 voting, average voting and utility voting. It is a type of cardinal voting electoral system, and aims to implement the utilitarian social choice rule.
Arrow's impossibility theoremArrow's impossibility theorem, the general possibility theorem or Arrow's paradox is an impossibility theorem in social choice theory that states that when voters have three or more distinct alternatives (options), no ranked voting electoral system can convert the ranked preferences of individuals into a community-wide (complete and transitive) ranking while also meeting the specified set of criteria: unrestricted domain, non-dictatorship, Pareto efficiency, and independence of irrelevant alternatives.
Comparison of electoral systemsComparison of electoral systems is the result of comparative politics for electoral systems. Electoral systems are the rules for conducting elections, a main component of which is the algorithm for determining the winner (or several winners) from the ballots cast. This article discusses methods and results of comparing different electoral systems, both those that elect a unique candidate in a 'single-winner' election and those that elect a group of representatives in a multiwinner election.
Bucklin votingBucklin voting is a class of voting methods that can be used for single-member and multi-member districts. As in highest median rules like the majority judgment, the Bucklin winner will be one of the candidates with the highest median ranking or rating. It is named after its original promoter, the Georgist politician James W. Bucklin of Grand Junction, Colorado, and is also known as the Grand Junction system. Bucklin rules varied, but here is a typical example: Voters are allowed rank preference ballots (first, second, third, etc.
Condorcet winner criterionAn electoral system satisfies the Condorcet winner criterion (pronkɒndɔrˈseɪ) if it always chooses the Condorcet winner when one exists. The candidate who wins a majority of the vote in every head-to-head election against each of the other candidates - that is, a candidate preferred by more voters than any others - is the Condorcet winner, although Condorcet winners do not exist in all cases. It is sometimes simply referred to as the "Condorcet criterion", though it is very different from the "Condorcet loser criterion".