Concept

Weil restriction

In mathematics, restriction of scalars (also known as "Weil restriction") is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another variety ResL/kX, defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields. Let L/k be a finite extension of fields, and X a variety defined over L. The functor from k-schemesop to sets is defined by (In particular, the k-rational points of are the L-rational points of X.) The variety that represents this functor is called the restriction of scalars, and is unique up to unique isomorphism if it exists. From the standpoint of sheaves of sets, restriction of scalars is just a pushforward along the morphism and is right adjoint to fiber product of schemes, so the above definition can be rephrased in much more generality. In particular, one can replace the extension of fields by any morphism of ringed topoi, and the hypotheses on X can be weakened to e.g. stacks. This comes at the cost of having less control over the behavior of the restriction of scalars. Let be a morphism of schemes. For a -scheme , if the contravariant functor is representable, then we call the corresponding -scheme, which we also denote with , the Weil restriction of with respect to . Where denotes the of the category of schemes over a fixed scheme . For any finite extension of fields, the restriction of scalars takes quasiprojective varieties to quasiprojective varieties. The dimension of the resulting variety is multiplied by the degree of the extension. Under appropriate hypotheses (e.g., flat, proper, finitely presented), any morphism of algebraic spaces yields a restriction of scalars functor that takes algebraic stacks to algebraic stacks, preserving properties such as Artin, Deligne-Mumford, and representability. Simple examples are the following: Let L be a finite extension of k of degree s. Then and is an s-dimensional affine space over Spec k.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.