Concept

Descent (mathematics)

Summary
In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification. The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start. Suppose X is a topological space covered by open sets Xi. Let Y be the disjoint union of the Xi, so that there is a natural mapping We think of Y as 'above' X, with the Xi projection 'down' onto X. With this language, descent implies a vector bundle on Y (so, a bundle given on each Xi), and our concern is to 'glue' those bundles Vi, to make a single bundle V on X. What we mean is that V should, when restricted to Xi, give back Vi, up to a bundle isomorphism. The data needed is then this: on each overlap intersection of Xi and Xj, we'll require mappings to use to identify Vi and Vj there, fiber by fiber. Further the fij must satisfy conditions based on the reflexive, symmetric and transitive properties of an equivalence relation (gluing conditions). For example, the composition for transitivity (and choosing apt notation). The fii should be identity maps and hence symmetry becomes (so that it is fiberwise an isomorphism). These are indeed standard conditions in fiber bundle theory (see transition map). One important application to note is change of fiber: if the fij are all you need to make a bundle, then there are many ways to make an associated bundle. That is, we can take essentially same fij, acting on various fibers. Another major point is the relation with the chain rule: the discussion of the way there of constructing tensor fields can be summed up as 'once you learn to descend the tangent bundle, for which transitivity is the Jacobian chain rule, the rest is just 'naturality of tensor constructions'. To move closer towards the abstract theory we need to interpret the disjoint union of the now as the fiber product (here an equalizer) of two copies of the projection p.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.