In mathematics, specifically in symplectic geometry, the momentum map (or, by false etymology, moment map) is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums.
Let M be a manifold with symplectic form ω. Suppose that a Lie group G acts on M via symplectomorphisms (that is, the action of each g in G preserves ω). Let be the Lie algebra of G, its dual, and
the pairing between the two. Any ξ in induces a vector field ρ(ξ) on M describing the infinitesimal action of ξ. To be precise, at a point x in M the vector is
where is the exponential map and denotes the G-action on M. Let denote the contraction of this vector field with ω. Because G acts by symplectomorphisms, it follows that is closed (for all ξ in ).
Suppose that is not just closed but also exact, so that for some function . If this holds, then one may choose the to make the map linear. A momentum map for the G-action on (M, ω) is a map such that
for all ξ in . Here is the function from M to R defined by . The momentum map is uniquely defined up to an additive constant of integration (on each connected component).
An -action on a symplectic manifold is called Hamiltonian if it is symplectic and if there exists a momentum map.
A momentum map is often also required to be -equivariant, where G acts on via the coadjoint action, and sometimes this requirement is included in the definition of a Hamiltonian group action. If the group is compact or semisimple, then the constant of integration can always be chosen to make the momentum map coadjoint equivariant. However, in general the coadjoint action must be modified to make the map equivariant (this is the case for example for the Euclidean group).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. The term "symplectic", introduced by Weyl, is a calque of "complex"; previously, the "symplectic group" had been called the "line complex group".
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a link between classical and quantum mechanics.
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds.
Explores canonical transformations, their properties, and applications in Hamiltonian mechanics, emphasizing their role in simplifying the analysis of complex systems.
Explores practical applications in nonlinear dynamics, emphasizing symplectic integration methods and thin lens approximations for accurate computations in accelerator physics.
We study the symplectic Howe duality using two new and independent combinatorial methods: via determinantal formulae on the one hand, and via (bi)crystals on the other hand. The first approach allows us to establish a generalised version where weight multi ...
In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high ...
EPFL2022
, ,
This work proposes an adaptive structure-preserving model order reduction method for finite-dimensional parametrized Hamiltonian systems modeling non-dissipative phenomena. To overcome the slowly decaying Kolmogorov width typical of transport problems, the ...