Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly non-reactive thermoplastic fluoropolymer produced by the polymerization of vinylidene difluoride. Its chemical formula is (C2H2F2)n.
PVDF is a specialty plastic used in applications requiring the highest purity, as well as resistance to solvents, acids and hydrocarbons. PVDF has low density 1.78 g/cm3 in comparison to other fluoropolymers, like polytetrafluoroethylene.
It is available in the form of piping products, sheet, tubing, films, plate and an insulator for premium wire. It can be injected, molded or welded and is commonly used in the chemical, semiconductor, medical and defense industries, as well as in lithium-ion batteries. It is also available as a cross-linked closed-cell foam, used increasingly in aviation and aerospace applications, and as an exotic 3D printer filament. It can also be used in repeated contact with food products, as it is FDA-compliant and non-toxic below its degradation temperature.
As a fine powder grade, it is an ingredient in high-end paints for metals. These PVDF paints have extremely good gloss and color retention. They are in use on many prominent buildings around the world, such as the Petronas Towers in Malaysia and Taipei 101 in Taiwan, as well as on commercial and residential metal roofing.
PVDF membranes are used in western blots for the immobilization of proteins, due to its non-specific affinity for amino acids.
PVDF is also used as a binder component for the carbon electrode in supercapacitors and for other electrochemical applications.
PVDF is sold under a variety of brand names including KF (Kureha), Hylar (Solvay), Kynar (Arkema) and Solef (Solvay).
In 1969, strong piezoelectricity was observed in PVDF, with the piezoelectric coefficient of poled (placed under a strong electric field to induce a net dipole moment) thin films as large as 6–7 pC/N: 10 times larger than that observed in any other polymer.
PVDF has a glass transition temperature (Tg) of about −35 °C and is typically 50–60% crystalline.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems.
Emulsion polymerization is a type of radical polymerization that usually starts with an emulsion incorporating water, monomer, and surfactant. The most common type of emulsion polymerization is an oil-in-water emulsion, in which droplets of monomer (the oil) are emulsified (with surfactants) in a continuous phase of water. Water-soluble polymers, such as certain polyvinyl alcohols or hydroxyethyl celluloses, can also be used to act as emulsifiers/stabilizers. The name "emulsion polymerization" is a misnomer that arises from a historical misconception.
A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering.
Explores polymer mechanochemistry, focusing on modulating chemical transformations in polymers using mechanical forces, covering topics like breaking bonds, mechanophores, and force-responsive materials.
Covers the properties of Parylene, hermeticity, thin film encapsulation, conductive coatings, and electrode arrays.
Covers Finite Element Modeling in Structural Mechanics, building a first model to analyze a Polysilicon Micro-Cantilever and understand load types.
Mechanochemistry harnesses mechanical force to facilitate chemical reactions. Traditionally, the field of polymer mechanochemistry has used methods to activate chemical bonds, which use forces that are larger than those that are required to break a covalen ...
The present invention concerns a method for producing at least one ferroelectric device or structure comprising the steps of providing at least one ferroelectric material or layer, or providing at least one ferroelectric material or layer to be patterned o ...
2023
, , ,
The global overabundance of electronic waste and ever-increasing concerns regarding the energy-and material-intensive manufacturing processes associated with traditional electronics are driving the development of solution-processed, degradable electronics. ...