Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
We show that a constant factor approximation of the shortest and closest lattice vector problem in any l(p)-norm can be computed in time 2((0.802 + epsilon)n). This matches the currently fastest constant factor approximation algorithm for the shortest vect ...
The security of public-key cryptography relies on well-studied hard problems, problems for which we do not have efficient algorithms. Factorization and discrete logarithm are the two most known and used hard problems. Unfortunately, they can be easily solv ...
An integer program (IP) is a problem of the form min{f(x):Ax=b,l≤x≤u,x∈Zn}, where A∈Zm×n, b∈Zm, l,u∈Zn, and f:Zn→Z is a separable convex objective function.
The problem o ...
For q a prime power, the discrete logarithm problem (DLP) in Fq consists in finding, for any g∈Fq× and h∈⟨g⟩, an integer x such that gx=h. We present an algorithm for computing discrete log ...
We give a randomized 2^{n+o(n)}-time and space algorithm for solving the Shortest Vector Problem (SVP) on n-dimensional Euclidean lattices. This improves on the previous fastest algorithm: the deterministic O(4^n)-time and O(2^n)-space algorithm of Miccian ...
Recent developments in quantum hardware indicate that systems featuring more than 50 physical qubits are within reach. At this scale, classical simulation will no longer be feasible and there is a possibility that such quantum devices may outperform even c ...
In this paper, we present a heuristic algorithm for solving exact, as well as approximate, shortest vector and closest vector problems on lattices. The algorithm can be seen as a modified sieving algorithm for which the vectors of the intermediate sets lie ...
In 2013 the Discrete Logarithm Problem in finite fields of small characteristic enjoyed a rapid series of developments, starting with the heuristic polynomial-time relation generation method due to Gologlu, Granger, McGuire and Zumbragel, and culminating w ...
For~q a prime power, the discrete logarithm problem (DLP) in~\Fq consists in finding, for any g∈Fq× and h∈⟨g⟩, an integer~x such that gx=h. We present an algorithm for computing discrete logarithm ...