Interpretation (logic)An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics. The most commonly studied formal logics are propositional logic, predicate logic and their modal analogs, and for these there are standard ways of presenting an interpretation.
If and only ifIn logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.
Functional completenessIn logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT. A gate or set of gates which is functionally complete can also be called a universal gate / gates.
Proof theoryProof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.
Propositional calculusPropositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.
Rule of inferenceIn philosophy of logic and logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion.
Semantics of logicIn logic, the semantics of logic or formal semantics is the study of the semantics, or interpretations, of formal and (idealizations of) natural languages usually trying to capture the pre-theoretic notion of entailment. The truth conditions of various sentences we may encounter in arguments will depend upon their meaning, and so logicians cannot completely avoid the need to provide some treatment of the meaning of these sentences.
Validity (logic)In logic, specifically in deductive reasoning, an argument is valid if and only if it takes a form that makes it impossible for the premises to be true and the conclusion nevertheless to be false. It is not required for a valid argument to have premises that are actually true, but to have premises that, if they were true, would guarantee the truth of the argument's conclusion. Valid arguments must be clearly expressed by means of sentences called well-formed formulas (also called wffs or simply formulas).
False (logic)In logic, false or untrue is the state of possessing negative truth value and is a nullary logical connective. In a truth-functional system of propositional logic, it is one of two postulated truth values, along with its negation, truth. Usual notations of the false are 0 (especially in Boolean logic and computer science), O (in prefix notation, Opq), and the up tack symbol . Another approach is used for several formal theories (e.g., intuitionistic propositional calculus), where a propositional constant (i.
Logical truthLogical truth is one of the most fundamental concepts in logic. Broadly speaking, a logical truth is a statement which is true regardless of the truth or falsity of its constituent propositions. In other words, a logical truth is a statement which is not only true, but one which is true under all interpretations of its logical components (other than its logical constants). Thus, logical truths such as "if p, then p" can be considered tautologies.