Related people (32)
Riccardo Rattazzi
Riccardo Rattazzi was born in Novara (Italy) in 1964. He studied physics at the University of Pisa, where he received the Laurea cum laude in 1987, and at the Scuola Normale Superiore where he received the Diploma in Scienze and carried out graduate research in theoretical physics. After having been a post-doctoral research associate at the Lawrence Berkeley Laboratory, at Rutgers University and at CERN, in 1998 Riccardo obtained a permanent research position at the Istituto Nazionale di Fisica Nucleare in Pisa. From 2001 to 2006 he was a staff member at the Theory Division of CERN. In 2006 he was appointed professor of physics at EPFL.
Anthony Christopher Davison
Anthony Davison has published on a wide range of topics in statistical theory and methods, and on environmental, biological and financial applications. His main research interests are statistics of extremes, likelihood asymptotics, bootstrap and other resampling methods, and statistical modelling, with a particular focus on the first currently.  Statistics of extremes concerns rare events such as storms, high winds and tides, extreme pollution episodes, sporting records, and the like. The subject has a long history, but under the impact of engineering and environmental problems has been an area of intense development in the past 20 years. Davison''s PhD work was in this area, in a project joint between the Departments of Mathematics and Mechanical Engineering at Imperial College, with the aim of modelling potential high exposures to radioactivity due to releases from nuclear installations. The key tools developed, joint with Richard Smith, were regression models for exceedances over high thresholds, which generalized earlier work by hydrologists, and formed the basis of some important later developments. This has led to an ongoing interest in extremes, and in particular their application to environmental and financial data. A major current interest is the development of suitable methods for modelling rare spatio-temporal events, particularly but not only in the context of climate change.   Likelihood asymptotics too have undergone very substantial development since 1980. Key tools here have been saddlepoint and related approximations, which can give remarkably accurate approximate distribution and density functions even for very small sample sizes. These approximations can be used for wide classes of parametric models, but also for certain bootstrap and resampling problems. The literature on these methods can seem arcane, but they are potentially widely applicable, and Davison wrote a book joint with Nancy Reid and Alessandra Brazzale intended to promote their use in applications. Bootstrap methods are now used in many areas of application, where they can provide a researcher with accurate inferences tailor-made to the data available, rather than relying on large-sample or other approximations of doubtful validity. The key idea is to replace analytical calculations of biases, variances, confidence and prediction intervals, and other measures of uncertainty with computer simulation from a suitable statistical model. In a nonparametric situation this model consists of the data themselves, and the simulation simply involves resampling from the existing data, while in a parametric case it involves simulation from a suitable parametric model. There is a wide range of possibilities between these extremes, and the book by Davison and Hinkley explores these for many data examples, with the aim of showing how and when resampling methods succeed and why they can fail. He was Editor of Biometrika (2008-2017), Joint Editor of Journal of the Royal Statistical Society, series B (2000-2003), editor of the IMS Lecture Notes – Monograph Series (2007), Associate Editor of Biometrika (1987-1999), and Associate Editor of the Brazilian Journal of Probability and Statistics (1987 – 2006). Currently he on the editorial board of Annual Reviews of Statistics and its Applications.  He has served on committees of Royal Statistical Society and of the Institute of Mathematical Statistics. He is an elected Fellow of the American Statistical Assocation and of the Institute of Mathematical Statistics, an elected member of the International Statistical Institute, and a Chartered Statistician. In 2009 he was awarded a laurea honoris causa in Statistical Science by the University of Padova, in 2011 he held a Francqui Chair at Hasselt University, and in 2012 he was Mitchell Lecturer at the University of Glasgow. In 2015 he received the Guy Medal in Silver of the Royal Statistical Society and in 2018 was a Medallion Lecturer of the Institute of Mathematical Statistics.
Volkan Cevher
Volkan Cevher received the B.Sc. (valedictorian) in electrical engineering from Bilkent University in Ankara, Turkey, in 1999 and the Ph.D. in electrical and computer engineering from the Georgia Institute of Technology in Atlanta, GA in 2005. He was a Research Scientist with the University of Maryland, College Park from 2006-2007 and also with Rice University in Houston, TX, from 2008-2009. Currently, he is an Associate Professor at the Swiss Federal Institute of Technology Lausanne and a Faculty Fellow in the Electrical and Computer Engineering Department at Rice University. His research interests include machine learning, signal processing theory,  optimization theory and methods, and information theory. Dr. Cevher is an ELLIS fellow and was the recipient of the Google Faculty Research award in 2018, the IEEE Signal Processing Society Best Paper Award in 2016, a Best Paper Award at CAMSAP in 2015, a Best Paper Award at SPARS in 2009, and an ERC CG in 2016 as well as an ERC StG in 2011.
Roberto Castello
Roberto Castello is a senior scientist and group leader at the EPFL Laboratory of Solar Energy and Building Physics. Physicist by training, he has extensive experience in collecting, classifying and interpreting large datasets using advanced data mining techniques and statistical methods. He received his MSc (2007) in Particle Physics and PhD (2010) in Physics and Astrophysics from the University of Torino. He worked as a postdoctoral researcher at the Belgian National Research Fund (2011-2014) and at the CERN Experimental Physics Department (2015-2017) as a research fellow and data scientist. He is primary author of more than 20 peer-reviewed publications and he presented at major international conferences in the high energy physics domain. In 2018 he joined the Solar Energy and Building Physics Laboratory (LESO-PB) to work on data mining and Machine Learning techniques for the built environment and renewable energy. His main research interests are: spatio-temporal modeling of renewable energy potential, energy consumption forecasting techniques, anomaly detection, and computer vision techniques for automated classification in the built environment. He leads the group of Urban Data Mining, Intelligence and Simulation at LESO-PB and he is a member of the NRP75 Big Data project (HyEnergy) of the Swiss National Science Foundation. He is a member of the Swiss Competence Centre for Energy Research (SCCER) and deputy leader of the working group on Leveraging Ubiquitous Energy Data. He has served as a scientific committee member, workshop organizer and speaker at international conferences (ICAE 2020, Applied Machine Learning Days 2019 and 2020, CISBAT 2019 and 2021 and SDS2020). Since 2017 he is member of the Geneva 2030 Ecosystem network, promoting the United Nations agenda towards the realization of the Sustainable Development Goals (SDGs).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.