Related people (57)
Hans Peter Herzig
Dr. Hans Peter Herzig is Professor at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and Past President of the European Optical Society (EOS). His current research interests include refractive and diffractive micro-optics, nano-scale optics and optical MEMS. Hans Peter Herzig received his diploma in physics from the Swiss Federal Institute of Technology in Zürich, Switzerland, in 1978. From 1978 to 1982 he was a scientist with the Optics Development Department of Kern in Aarau, Switzerland, working in lens design and optical testing. In 1983, he became a graduate research assistant with the Applied Optics Group at the Institute of Microtechnology of the University of Neuchâtel, Switzerland, working in the field of holographic optical elements. In 1987, he received his PhD degree in optics. From 1989 to 2001 he was head of the micro-optics research group in Neuchâtel. From 2002 to 2008 he was a full professor and head of the Applied Optics Laboratory at the University of Neuchâtel. Professor Herzig joined the faculty at EPFL in January 2009. He is member of OSA, IEEE Photonics Society and Fellow of EOS. 2009-2010 he was President of the European Optical Society (EOS), 2001-2009 Vice-President of the Swiss Society of Optics and Microscopy and 2012-2014 Vice-President of ICO. Dr. Herzig is in the editorial board of different scientific journals (JM3, Optical Review, JEOS). He served as Conference Chairman for international conferences of EOS, IEE, IEEE/LEOS, OSA and SPIE; and as Guest Editor of three special issues of IEEE, OSA journals. He is editor of a well-known book on micro-optics (published in English and Chinese), author of 14 book chapters, over 150 “peer reviewed” articles and 300 conference proceedings.
Theo Lasser
De nationalité allemande, né en 1952 à Lauchheim (Baden-Württemberg). Après des études de physique à l'Université Fridericiana de Karlsruhe, il y obtient son diplôme de physique en 1978. En 1979, il rejoint l'Institut de Recherches franco-allemand à Saint-Louis (France) comme collaborateur scientifique. En 1986, il rejoint la division de recherche de Carl Zeiss à Oberkochen (Allemagne) où il développe principalement divers systèmes laser pour des applications médicales. Dès 1990, il dirige le laboratoire laser de la division médicale. En 1993, il prend la direction de l'unité "laser d'ophtalmologie". Dès le début 1995, il est chargé de restructurer et regrouper les nombreuses activités d'ophtalmologie chez Carl Zeiss et de les transférer à Jena. Durant cette période, il réalise des nouveaux instruments de réfraction, des biomicroscopes et des caméras rétiniennes. Dès janvier 1998, il dirige la recherche de Carl Zeiss à Jena où il initie de nouveaux projets en microscopie, en microtechnique et en recherche médicale. En juillet 1998, il est nommé professeur ordinaire en optique biomédicale à l'Institut d'optique appliquée. Au sein du Département de microtechnique, son activité de recherche porte sur la photonique biomédicale. Il participe à l'enseignement d'optique et d'instrumentation biomédicale. Short CV 1972 Physics University of Karlsruhe (Germany) 1979 l'Institut de Recherches franco-allemand à Saint-Louis (France) 1986 central research division Carl Zeiss, Oberkochen (Germany) 1990 Med - Division, ophthalmic lasers 1994 Ophthalmology division, Carl Zeiss Jena 1998 Head of Central research Carl Zeiss Jena 1998 full Professor Ecole Polytechnique Federale Lausanne, Switzerland
Christian Depeursinge
Christian Depeursinge is the leader of the Microvision and Micro-Diagnostics (MVD) group at the Advanced Photonics Laboratory of the Institute of Microengineering at EPFL (Ecole Polytechnique Fédérale de Lausanne), Switzerland (http://apl.epfl.ch/muvision). His research and expertise in biomedical engineering and optics is internationally acknowledged. His current research topics include coherent and incoherent Imaging applied to diagnostics in biology, His research group pioneered in the development of DHM technology. He worked on several projects developed in cooperation with European and international partners. He is author and co-author of over 100 papers published in peer reviewed journals, several book chapters and more than 30 patents. He has given more than 20 invited lectures and plenaries in the last five years. He developed many projects in cooperation with national and international industries. He is co-founder of a start-up company (Lyncée Tec SA: www.Lynceetec.com). He is currently teaching at EPFL and occasionally in foreign universities and institutes.
Olivier Martin
Olivier J.F. Martin received the M.Sc. and Ph.D. degrees in physics in 1989 and 1994, respectively, from the Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland. In 1989, he joined IBM Zurich Research Laboratory, where he investigated thermal and optical properties of semiconductor laser diodes. Between 1994 and 1997 he was a research staff member at the Swiss Federal Institute of Technology, Zurich (ETHZ). In 1997 he received a Lecturer fellowship from the Swiss National Science Foundation (SNSF). During the period 1996-1999, he spent a year and a half in the U.S.A., as invited scientist at the University of California in San Diego (UCSD). In 2001 he received a Professorship grant from the SNSF and became Professor of Nano-Optics at the ETHZ. In 2003, he was appointed Professor of Nanophotonics and Optical Signal Processing at the Swiss Federal Institute of Technology, Lausanne (EPFL), where he is currently head of the Nanophotonics and Metrology Laboratory and Director of the Microengineering Section.
Suliana Manley
From 2016 Associate professor, EPFL, Lausanne, Switzerland 2009-2016 Tenure-track assistant professor, EPFL, Lausanne, Switzerland 2006-2009 Post-Doctoral fellow, National Institutes of Health, Bethesda, MD, USA 2004-2006 Post-Doctoral fellow, Massachusetts Institute of Technology, Cambridge, MA, USA 1999-2004 PhD (Physics) Awarded 06/2004, Harvard University, Cambridge, MA, USA 1993-1997 Bachelors (Cum Laude) Physics & Mathematics, Rice University, Houston, TX, USA
Luc Thévenaz
Luc Thévenaz received in 1982 the M.Sc. degree in astrophysics from the Observatory of Geneva, Switzerland, and in 1988 the Ph.D. degree in physics from the University of Geneva, Switzerland. He developed at this moment his field of expertise, i.e. fibre optics. In 1988 he joined the Swiss Federal Institute of Technology of Lausanne (EPFL) where he currently leads a research group involved in photonics, namely fibre optics and optical sensing. Research topics include Brillouin-scattering fibre sensors, nonlinear fibre optics, slow & fast light and laser spectroscopy in gases.  His main achievements are: - the invention of a novel configuration for distributed Brillouin fibre sensing based on a single laser source, resulting in a high intrinsic stability making for the first time field measurements possible, - the development of a photoacoustic gas trace sensor using a near infra-red semiconductor laser, detecting a gas concentration at the ppb level, - the first experimental demonstration of optically-controlled slow & fast light in optical fibres, realized at ambient temperature and operating at any wavelength since based on stimulated Brillouin scattering. The first negative group velocity of light was also realized in optical fibres using this approach.  In 1991, he visited the PUC University in Rio de Janeiro, Brazil where he worked on the generation of picosecond pulses in semiconductor lasers. In 1991-1992 he stayed at Stanford University, USA, where he participated in the development of a Brillouin laser gyroscope. He joined in 1998 the company Orbisphere Laboratories SA in Neuchâtel, Switzerland, as Expert Scientist to develop gas trace sensors based on photoacoustic laser spectroscopy. In 1998 and 1999 he visited the Korea Advanced Institute of Science and Technology (KAIST) in Daejon, South Korea, where he worked on fibre laser current sensors. In 2000 he co-founded the spin-off company Omnisens that is developing and commercializing advanced photonic instrumentation. In 2007 he visited Tel Aviv University where he studied the all-optical control of polarization in optical fibres. During winter 2010 he stayed at the University of Sydney where he studied applications of stimulated Brillouin scattering in chalcogenide waveguides. In 2014 he stayed at the Polytechnic University of Valencia where he worked on microwave applications of stimulated Brillouin scattering.  He was member of the Consortium in the FP7 European Project GOSPEL "Governing the speed of light", was Chairman of the European COST Action 299 "FIDES: Optical Fibres for New Challenges Facing the Information Society" and is author or co-author of some 480 publications and 12 patents. He is now Coordinator of the H2020 Marie Skłodowska-Curie Innovative Training Networks FINESSE (FIbre NErve Systems for Sensing).  He is co-Executive Editor-in-Chief of the journal "Nature Light: Science & Applications" and is Member of the Editorial Board (Associate Editor) for the journal "APL Photonics" & "Laser & Photonics Reviews". He is also Fellow of both the IEEE and the Optical Society (OSA).
Giorgio Margaritondo
Citizen of the USA and Switzerland, Giorgio Margaritondo was born in Rome, Italy, in 1946. He received the Laurea summa cum laude from the University of Rome in 1969. From 1969 he was an employee of the Italian National Research Council in Rome and Frascati and, in 1975-77, he was at Bell Laboratories in the USA. From 1978 to 1990, he was professor of physics at the University of Wisconsin-Madison in the USA; in 1984 he was nominated associate director for research of the Synchrotron Radiation Center of the same university. In 1990 he was nominated "professeur ordinaire" (full professor) at the EPFL; he directed the Institute of Applied Physics and the Physics Department. He was also a honorary faculty member at Vanderbilt University in Nashville. In 2001 he became Dean of the EPFL Faculty of Basic Sciences. In 2004 he was nominated Provost and he served until 2010, when he became Dean of Continuing Education, until his retirement from the EPFL in 2016 In addition to teaching general physics, his activity concerns the physics of semiconductors and superconductors (electronic states, surfaces and interfaces) and of biological systems; his main experimental techniques are electron spectroscopy and spectromicroscopy, x-ray imaging and scanning near-field microscopy, including experiments with synchrotron light and with free electron lasers. Author of more than 700 scientific publications and 9 books, he was also coordinator in 1995-98 of the scientific division of the Elettra synchrotron in Trieste. In 1997-2003 he was coordinator of the European Commission Round Table on synchrotron radiation, and then became president of the Council of the European Commission Integrated Initiative on Synchrotron and Free Electron Laser Science (IA-SFS and then ELISA), the largest network in the world in this domain. In 2011-15, he was Editor-in-Chief of Journal of Physics D (Applied Physics). He is currently vice-president of the council of the Università della Svizzera Italiana (USI), and president of the Scientific and Technological Committee of the Italian Institute of Technology (IIT). He is Fellow of the American Physical Society and of the American Vacuum Society and Fellow and Chartered Physicist of the Institute of Physics.
Aleksandra Radenovic
From April 2021 Full Professor 2015 -2021 Associate Professor2008-2015 Tenure-Track Assistant Professor2004-2007 Postdoc at the University of California, Berkeley in the group of Prof.Liphardt2003 PhD student of Prof. Dietler in Laboratory of Physics of Living Matter, University of Lausanne 1999 Diploma thesis on the subject of the Raman spectroscopy of beta carotene1994-1999 Physics department at the University of Zagreb1994 baccalaureate, Classical gymnasium

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.