In mathematics, a ternary relation or triadic relation is a finitary relation in which the number of places in the relation is three. Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs, i.e. a subset of the Cartesian product A × B of some sets A and B, so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A, B and C. An example of a ternary relation in elementary geometry can be given on triples of points, where a triple is in the relation if the three points are collinear. Another geometric example can be obtained by considering triples consisting of two points and a line, where a triple is in the ternary relation if the two points determine (are incident with) the line. A function f: A × B → C in two variables, mapping two values from sets A and B, respectively, to a value in C associates to every pair (a,b) in A × B an element f(a, b) in C. Therefore, its graph consists of pairs of the form ((a, b), f(a, b)). Such pairs in which the first element is itself a pair are often identified with triples. This makes the graph of f a ternary relation between A, B and C, consisting of all triples (a, b, f(a, b)), satisfying a in A, b in B, and f(a, b) in C. Cyclic order Given any set A whose elements are arranged on a circle, one can define a ternary relation R on A, i.e. a subset of A3 = A × A × A, by stipulating that R(a, b, c) holds if and only if the elements a, b and c are pairwise different and when going from a to c in a clockwise direction one passes through b. For example, if A = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } represents the hours on a clock face, then R(8, 12, 4) holds and R(12, 8, 4) does not hold. Betweenness relation Ternary equivalence relation Congruence modulo m The ordinary congruence of arithmetics which holds for three integers a, b, and m if and only if m divides a − b, formally may be considered as a ternary relation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.