In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S2. Namely, given a surface X lying in R3, the Gauss map is a continuous map N: X → S2 such that N(p) is a unit vector orthogonal to X at p, namely a normal vector to X at p.
The Gauss map can be defined (globally) if and only if the surface is orientable, in which case its degree is half the Euler characteristic. The Gauss map can always be defined locally (i.e. on a small piece of the surface). The Jacobian determinant of the Gauss map is equal to Gaussian curvature, and the differential of the Gauss map is called the shape operator.
Gauss first wrote a draft on the topic in 1825 and published in 1827.
There is also a Gauss map for a link, which computes linking number.
The Gauss map can be defined for hypersurfaces in Rn as a map from a hypersurface to the unit sphere Sn − 1 ⊆ Rn.
For a general oriented k-submanifold of Rn the Gauss map can also be defined, and its target space is the oriented Grassmannian
i.e. the set of all oriented k-planes in Rn. In this case a point on the submanifold is mapped to its oriented tangent subspace. One can also map to its oriented normal subspace; these are equivalent as via orthogonal complement.
In Euclidean 3-space, this says that an oriented 2-plane is characterized by an oriented 1-line, equivalently a unit normal vector (as ), hence this is consistent with the definition above.
Finally, the notion of Gauss map can be generalized to an oriented submanifold X of dimension k in an oriented ambient Riemannian manifold M of dimension n. In that case, the Gauss map then goes from X to the set of tangent k-planes in the tangent bundle TM. The target space for the Gauss map N is a Grassmann bundle built on the tangent bundle TM. In the case where , the tangent bundle is trivialized (so the Grassmann bundle becomes a map to the Grassmannian), and we recover the previous definition.
The area of the image of the Gauss map is called the total curvature and is equivalent to the surface integral of the Gaussian curvature.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface.
In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : M → N is an immersion if is an injective function at every point p of M (where TpX denotes the tangent space of a manifold X at a point p in X). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M: The function f itself need not be injective, only its derivative must be. A related concept is that of an embedding.
In differential geometry, the second fundamental form (or shape tensor) is a quadratic form on the tangent plane of a smooth surface in the three-dimensional Euclidean space, usually denoted by (read "two"). Together with the first fundamental form, it serves to define extrinsic invariants of the surface, its principal curvatures. More generally, such a quadratic form is defined for a smooth immersed submanifold in a Riemannian manifold. The second fundamental form of a parametric surface S in R3 was introduced and studied by Gauss.
Triaxial weaving, a craft technique that enables the generation of surfaces with tri-directional arrays of initially straight elastic strips, has long been loved by basket makers and artists seeking a combination of practical and aesthetically-pleasing str ...
American Physical Society2020
In recent work, methods from the theory of modular forms were used to obtain Fourier uniqueness results in several key dimensions (d = 1, 8, 24), in which a function could be uniquely reconstructed from the values of it and its Fourier transform on a discr ...
2021
, ,
The design of envelopes with complex geometries often leads to construction challenges. To overcome these difficulties, resorting to discrete differential geometry proved successful by establishing close links between mesh properties and the existence of g ...