**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Number Theory: History and Concepts

Description

This lecture covers the history of Number Theory, from Euclid to modern mathematicians like Gauss, Wiles, and Tao. It explores topics such as divisibility, congruence relations, and the division algorithm, with applications in cryptography and computer science.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a

Related concepts (36)

Prime number

A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4.

Equivalence relation

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class.

Sexy prime

In number theory, sexy primes are prime numbers that differ from each other by 6. For example, the numbers 5 and 11 are both sexy primes, because both are prime and 11 − 5 = 6. The term "sexy prime" is a pun stemming from the Latin word for six: sex. If p + 2 or p + 4 (where p is the lower prime) is also prime, then the sexy prime is part of a prime triplet.

Formula for primes

In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. No such formula which is efficiently computable is known. A number of constraints are known, showing what such a "formula" can and cannot be. A simple formula is for positive integer , where is the floor function, which rounds down to the nearest integer. By Wilson's theorem, is prime if and only if . Thus, when is prime, the first factor in the product becomes one, and the formula produces the prime number .

Quotient (universal algebra)

In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense described below. Its equivalence classes partition the elements of the given algebraic structure. The quotient algebra has these classes as its elements, and the compatibility conditions are used to give the classes an algebraic structure.

Related lectures (56)

Counting Principles: Sequences and FunctionsCS-101: Advanced information, computation, communication I

Covers counting principles, sequences, functions, and number representations in mathematics and computer science.

Prime Numbers and Primality TestingCOM-401: Cryptography and security

Covers prime numbers, RSA cryptography, and primality testing, including the Chinese Remainder Theorem and the Miller-Rabin test.

Elementary Algebra: Numeric Sets

Explores elementary algebra concepts related to numeric sets and prime numbers, including unique factorization and properties.

Integers: Well Ordering and InductionMATH-310: Algebra

Explores well ordering, induction, Euclidean division, and prime factorization in integers.

RSA Cryptography: Primality Testing and Quadratic ResiduesCOM-401: Cryptography and security

Explores RSA cryptography, covering primality testing, quadratic residues, and cryptographic applications.