Cusp (singularity)In mathematics, a cusp, sometimes called spinode in old texts, is a point on a curve where a moving point must reverse direction. A typical example is given in the figure. A cusp is thus a type of singular point of a curve. For a plane curve defined by an analytic, parametric equation a cusp is a point where both derivatives of f and g are zero, and the directional derivative, in the direction of the tangent, changes sign (the direction of the tangent is the direction of the slope ).
Concave functionIn mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex. A real-valued function on an interval (or, more generally, a convex set in vector space) is said to be concave if, for any and in the interval and for any , A function is called strictly concave if for any and . For a function , this second definition merely states that for every strictly between and , the point on the graph of is above the straight line joining the points and .
Cubic plane curveIn mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation F(x, y, z) = 0 applied to homogeneous coordinates (x:y:z) for the projective plane; or the inhomogeneous version for the affine space determined by setting z = 1 in such an equation. Here F is a non-zero linear combination of the third-degree monomials x^3, y^3, z^3, x^2 y, x^2 z, y^2 x, y^2 z, z^2 x, z^2 y, xyz These are ten in number; therefore the cubic curves form a projective space of dimension 9, over any given field K.
Function of several real variablesIn mathematical analysis and its applications, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex.
Convex functionIn mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain.
Linear approximationIn mathematics, a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function). They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations. Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case states that where is the remainder term.
Intersection numberIn mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem. The intersection number is obvious in certain cases, such as the intersection of the x- and y-axes in a plane, which should be one.
Sine and cosineIn mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
Differential calculusIn mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve. The primary objects of study in differential calculus are the derivative of a function, related notions such as the differential, and their applications. The derivative of a function at a chosen input value describes the rate of change of the function near that input value.
Bézout's theoremBézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. It is named after Étienne Bézout. In some elementary texts, Bézout's theorem refers only to the case of two variables, and asserts that, if two plane algebraic curves of degrees and have no component in common, they have intersection points, counted with their multiplicity, and including points at infinity and points with complex coordinates.