**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Function of several real variables

Summary

In mathematical analysis and its applications, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex. However, the study of the complex-valued functions may be easily reduced to the study of the real-valued functions, by considering the real and imaginary parts of the complex function; therefore, unless explicitly specified, only real-valued functions will be considered in this article.
The domain of a function of n variables is the subset of \mathbb{R}^n for which the function is defined. As usual, the domain of a function of several real variables is supposed to contain a nonempty open subset of \mathbb{R}^n.
A real-valued function of n real variables is a function that takes as input n real numbers, commonly represented by the variables x1, x2, ..., xn, for producing another real number, the value of the function, commonly denoted f(x1, x2, ..., xn). For simplicity, in this article a real-valued function of several real variables will be simply called a function. To avoid any ambiguity, the other types of functions that may occur will be explicitly specified.
Some functions are defined for all real values of the variables (one says that they are everywhere defined), but some other functions are defined only if the value of the variable are taken in a subset X of Rn, the domain of the function, which is always supposed to contain an open subset of Rn. In other words, a real-valued function of n real variables is a function
such that its domain X is a subset of Rn that contains a nonempty open set.
An element of X being an n-tuple (x1, x2, ..., xn) (usually delimited by parentheses), the general notation for denoting functions would be f((x1, x2, ..., xn)).

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (18)

Related concepts (29)

Related courses (33)

Related publications (90)

Related units (1)

Related lectures (217)

Function of a real variable

In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.

Real-valued function

In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called real functions) and real-valued functions of several real variables are the main object of study of calculus and, more generally, real analysis. In particular, many function spaces consist of real-valued functions. Let be the set of all functions from a set X to real numbers .

Differential of a function

In calculus, the differential represents the principal part of the change in a function with respect to changes in the independent variable. The differential is defined by where is the derivative of f with respect to , and is an additional real variable (so that is a function of and ). The notation is such that the equation holds, where the derivative is represented in the Leibniz notation , and this is consistent with regarding the derivative as the quotient of the differentials.

MATH-106(a): Analysis II

Étudier les concepts fondamentaux d'analyse, et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.

MATH-100(b): Advanced analysis I

Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.

MATH-106(b): Analysis II

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.

Continuity and Limits in Multivariable Functions

Explores limits and continuity in multivariable functions, including level sets and limit existence.

Recurrence Method: Generalization and Differential Calculus

Explores the fundamental principle of the recurrence method and differential calculus of functions of several variables.

Partial Derivatives: Higher Order and Applications

Covers the concept of partial derivatives of higher order and their applications in various contexts.

Victor Panaretos, Yoav Zemel, Valentina Masarotto

We consider the problem of comparing several samples of stochastic processes with respect to their second-order structure, and describing the main modes of variation in this second order structure, if present. These tasks can be seen as an Analysis of Vari ...

In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...

This code is used for developing the project entitled “Study on conformal antennas, proof of concept prototype for a UAV”, from the aspects of theory, design, and implementation. This code aims to speed up the investigation of an arbitrary phased array ant ...