Simple-homotopy equivalenceIn mathematics, particularly the area of topology, a simple-homotopy equivalence is a refinement of the concept of homotopy equivalence. Two CW-complexes are simple-homotopy equivalent if they are related by a sequence of collapses and expansions (inverses of collapses), and a homotopy equivalence is a simple homotopy equivalence if it is homotopic to such a map. The obstruction to a homotopy equivalence being a simple homotopy equivalence is the Whitehead torsion, A homotopy theory that studies simple-homotopy types is called simple homotopy theory.
London Mathematical SocietyThe London Mathematical Society (LMS) is one of the United Kingdom's learned societies for mathematics (the others being the Royal Statistical Society (RSS), the Institute of Mathematics and its Applications (IMA), the Edinburgh Mathematical Society and the Operational Research Society (ORS). The Society was established on 16 January 1865, the first president being Augustus De Morgan. The earliest meetings were held in University College, but the Society soon moved into Burlington House, Piccadilly.
Homotopy theoryIn mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and (specifically the study of ). In homotopy theory and algebraic topology, the word "space" denotes a topological space.
Algebraic topologyAlgebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.