**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Algebraic topology

Summary

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.
Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.
Below are some of the main areas studied in algebraic topology:
Homotopy group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.
Homology
In algebraic topology and abstract algebra, homology (in part from Greek ὁμός homos "identical") is a certain general procedure to associate a sequence of abelian groups or modules with a given mathematical object such as a topological space or a group.
Cohomology
In homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups defined from a cochain complex. That is, cohomology is defined as the abstract study of cochains, cocycles, and coboundaries. Cohomology can be viewed as a method of assigning algebraic invariants to a topological space that has a more refined algebraic structure than does homology. Cohomology arises from the algebraic dualization of the construction of homology. In less abstract language, cochains in the fundamental sense should assign 'quantities' to the chains of homology theory.
Manifold
A manifold is a topological space that near each point resembles Euclidean space. Examples include the plane, the sphere, and the torus, which can all be realized in three dimensions, but also the Klein bottle and real projective plane which cannot be embedded in three dimensions, but can be embedded in four dimensions.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (74)

Related people (18)

Related units (1)

Related concepts (56)

Related courses (25)

Homology (mathematics)

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes.

Michael Atiyah

Sir Michael Francis Atiyah (əˈtiːə; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded the Fields Medal in 1966 and the Abel Prize in 2004. Atiyah was born on 22 April 1929 in Hampstead, London, England, the son of Jean (née Levens) and Edward Atiyah. His mother was Scottish and his father was a Lebanese Orthodox Christian.

Brouwer fixed-point theorem

Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function mapping a nonempty compact convex set to itself there is a point such that . The simplest forms of Brouwer's theorem are for continuous functions from a closed interval in the real numbers to itself or from a closed disk to itself. A more general form than the latter is for continuous functions from a nonempty convex compact subset of Euclidean space to itself.

MATH-497: Homotopy theory

We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen

MATH-410: Riemann surfaces

This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex

MATH-535: Algebraic geometry III - selected topics

This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl

Ali H. Sayed, Mert Kayaalp, Valentina Shumovskaia, Mert Cemri

The adaptive social learning paradigm helps model how networked agents are able to form opinions on a state of nature and track its drifts in a changing environment. In this framework, the agents repeatedly update their beliefs based on private observation ...

Related lectures (47)

In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...

Michael Christoph Gastpar, Sung Hoon Lim, Adriano Pastore, Chen Feng

This paper considers the problem of distributed lossy compression where the goal is to recover one or more linear combinations of the sources at the decoder, subject to distortion constraints. For certain configurations, it is known that codes with algebra ...

2023Homology of Riemann Surfaces

Explores the homology of Riemann surfaces, including singular homology and the standard n-simplex.

The Topological Künneth Theorem

Explores the topological Künneth Theorem, emphasizing commutativity and homotopy equivalence in chain complexes.

The Duplication of the Cube

Explores the historical significance of the duplication of the cube problem and the attribution of mathematical instruments.