Schwarzschild metricIn Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun.
Neutron starA neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses (), possibly more if the star was especially metal-rich. Except for black holes, neutron stars are the smallest and densest currently known class of stellar objects. Neutron stars have a radius on the order of and a mass of about . They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.
Frame of referenceIn physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points―geometric points whose position is identified both mathematically (with numerical coordinate values) and physically (signaled by conventional markers). For n dimensions, n + 1 reference points are sufficient to fully define a reference frame.
Gravitational potentialIn classical mechanics, the gravitational potential at a point in space is equal to the work (energy transferred) per unit mass that would be needed to move an object to that point from a fixed reference point. It is analogous to the electric potential with mass playing the role of charge. The reference point, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
MetreThe metre (or meter in American spelling; symbol: m) is the base unit of length in the International System of Units (SI). The metre was originally defined in 1791 as one ten-millionth of the distance from the equator to the North Pole along a great circle, so the Earth's circumference is approximately 40000 km. In 1799, the metre was redefined in terms of a prototype metre bar. The actual bar used was changed in 1889. In 1960, the metre was redefined in terms of a certain number of wavelengths of a certain emission line of krypton-86.
Minute and second of arcA minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to 1/60 of one degree. Since one degree is 1/360 of a turn (or complete rotation), one arcminute is 1/21,600 of a turn. The nautical mile (nmi) was originally defined as the arc length of a minute of latitude on a spherical Earth, so the actual Earth circumference is very near 21,600nmi. A minute of arc is pi/10,800 of a radian.
World lineThe world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept of modern physics, and particularly theoretical physics. The concept of a "world line" is distinguished from concepts such as an "orbit" or a "trajectory" (e.g., a planet's orbit in space or the trajectory of a car on a road) by inclusion of the dimension time, and typically encompasses a large area of spacetime wherein paths which are straight perceptually are rendered as curves in space-time to show their (relatively) more absolute position states—to reveal the nature of special relativity or gravitational interactions.
SpheroidA spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry. If the ellipse is rotated about its major axis, the result is a prolate spheroid, elongated like a rugby ball. The American football is similar but has a pointier end than a spheroid could. If the ellipse is rotated about its minor axis, the result is an oblate spheroid, flattened like a lentil or a plain M&M.
Point particleA point particle (ideal particle or point-like particle, often spelled pointlike particle) is an idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension; being dimensionless, it does not take up space. A point particle is an appropriate representation of any object whenever its size, shape, and structure are irrelevant in a given context. For example, from far enough away, any finite-size object will look and behave as a point-like object.
Gravitational energyGravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released (converted into kinetic energy) when the objects fall towards each other. Gravitational potential energy increases when two objects are brought further apart. For two pairwise interacting point particles, the gravitational potential energy is given by where and are the masses of the two particles, is the distance between them, and is the gravitational constant.