Category of modulesIn algebra, given a ring R, the category of left modules over R is the whose are all left modules over R and whose morphisms are all module homomorphisms between left R-modules. For example, when R is the ring of integers Z, it is the same thing as the . The category of right modules is defined in a similar way. One can also define the category of bimodules over a ring R but that category is equivalent to the category of left (or right) modules over the enveloping algebra of R (or over the opposite of that).
Category of ringsIn mathematics, the category of rings, denoted by Ring, is the whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings is , meaning that the class of all rings is proper. The category Ring is a meaning that the objects are sets with additional structure (addition and multiplication) and the morphisms are functions that preserve this structure.
Monoid (category theory)In , a branch of mathematics, a monoid (or monoid object, or internal monoid, or algebra) (M, μ, η) in a (C, ⊗, I) is an M together with two morphisms μ: M ⊗ M → M called multiplication, η: I → M called unit, such that the pentagon and the unitor diagram commute. In the above notation, 1 is the identity morphism of M, I is the unit element and α, λ and ρ are respectively the associativity, the left identity and the right identity of the monoidal category C. Dually, a comonoid in a monoidal category C is a monoid in the Cop.
Closed monoidal categoryIn mathematics, especially in , a closed monoidal category (or a monoidal closed category) is a that is both a and a in such a way that the structures are compatible. A classic example is the , Set, where the monoidal product of sets and is the usual cartesian product , and the internal Hom is the set of functions from to . A non- example is the , K-Vect, over a field . Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another.
Monoidal categoryIn mathematics, a monoidal category (or tensor category) is a equipped with a bifunctor that is associative up to a natural isomorphism, and an I that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant s commute. The ordinary tensor product makes vector spaces, abelian groups, R-modules, or R-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples.
Dagger compact categoryIn , a branch of mathematics, dagger compact categories (or dagger compact closed categories) first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations (that is, ). They also appeared in the work of John Baez and James Dolan as an instance of semistrict k-tuply , which describe general topological quantum field theories, for n = 1 and k = 3.
Enriched categoryIn , a branch of mathematics, an enriched category generalizes the idea of a by replacing hom-sets with objects from a general . It is motivated by the observation that, in many practical applications, the hom-set often has additional structure that should be respected, e.g., that of being a vector space of morphisms, or a topological space of morphisms. In an enriched category, the set of morphisms (the hom-set) associated with every pair of objects is replaced by an in some fixed monoidal category of "hom-objects".
Complete categoryIn mathematics, a complete category is a in which all small s exist. That is, a category C is complete if every F : J → C (where J is ) has a limit in C. , a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a : for any two objects there can be at most one morphism from one object to the other.
Compact closed categoryIn , a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the having finite-dimensional vector spaces as s and linear maps as s, with tensor product as the structure. Another example is , the category having sets as objects and relations as morphisms, with .