Initial topologyIn general topology and related areas of mathematics, the initial topology (or induced topology or weak topology or limit topology or projective topology) on a set with respect to a family of functions on is the coarsest topology on that makes those functions continuous. The subspace topology and product topology constructions are both special cases of initial topologies. Indeed, the initial topology construction can be viewed as a generalization of these.
Generic pointIn algebraic geometry, a generic point P of an algebraic variety X is, roughly speaking, a point at which all generic properties are true, a generic property being a property which is true for almost every point. In classical algebraic geometry, a generic point of an affine or projective algebraic variety of dimension d is a point such that the field generated by its coordinates has transcendence degree d over the field generated by the coefficients of the equations of the variety.
Excluded point topologyIn mathematics, the excluded point topology is a topology where exclusion of a particular point defines openness. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is then the excluded point topology on X. There are a variety of cases which are individually named: If X has two points, it is called the Sierpiński space. This case is somewhat special and is handled separately.
Scott continuityIn mathematics, given two partially ordered sets P and Q, a function f: P → Q between them is Scott-continuous (named after the mathematician Dana Scott) if it preserves all directed suprema. That is, for every directed subset D of P with supremum in P, its has a supremum in Q, and that supremum is the image of the supremum of D, i.e. , where is the directed join. When is the poset of truth values, i.e. Sierpiński space, then Scott-continuous functions are characteristic functions of open sets, and thus Sierpiński space is the classifying space for open sets.
Ultraconnected spaceIn mathematics, a topological space is said to be ultraconnected if no two nonempty closed sets are disjoint. Equivalently, a space is ultraconnected if and only if the closures of two distinct points always have non trivial intersection. Hence, no T1 space with more than one point is ultraconnected. Every ultraconnected space is path-connected (but not necessarily arc connected). If and are two points of and is a point in the intersection , the function defined by if , and if , is a continuous path between and .
Paracompact spaceIn mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact.
Discrete valuation ringIn abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain R which satisfies any one of the following equivalent conditions: R is a local principal ideal domain, and not a field. R is a valuation ring with a value group isomorphic to the integers under addition. R is a local Dedekind domain and not a field. R is a Noetherian local domain whose maximal ideal is principal, and not a field.
Normal spaceIn topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. A topological space X is a normal space if, given any disjoint closed sets E and F, there are neighbourhoods U of E and V of F that are also disjoint.
Space (mathematics)In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions on another space, or subspaces of another space.
Regular spaceIn topology and related fields of mathematics, a topological space X is called a regular space if every closed subset C of X and a point p not contained in C admit non-overlapping open neighborhoods. Thus p and C can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms. A topological space X is a regular space if, given any closed set F and any point x that does not belong to F, there exists a neighbourhood U of x and a neighbourhood V of F that are disjoint.