Generic pointIn algebraic geometry, a generic point P of an algebraic variety X is, roughly speaking, a point at which all generic properties are true, a generic property being a property which is true for almost every point. In classical algebraic geometry, a generic point of an affine or projective algebraic variety of dimension d is a point such that the field generated by its coordinates has transcendence degree d over the field generated by the coefficients of the equations of the variety.
Continuité de ScottEn mathématiques pour l'informatique, étant donné deux ensembles partiellement ordonnés P et Q, une fonction f : P → Q entre eux est Scott-continue (du nom du mathématicien Dana Scott) si elle préserve tous les suprema dirigés, c'est-à-dire que pour chaque sous-ensemble orienté D de P avec supremum dans P, son a un supremum dans Q, et ce supremum est l'image du supremum de D, c'est-à-dire , où est la jointure dirigée.
Ultraconnected spaceIn mathematics, a topological space is said to be ultraconnected if no two nonempty closed sets are disjoint. Equivalently, a space is ultraconnected if and only if the closures of two distinct points always have non trivial intersection. Hence, no T1 space with more than one point is ultraconnected. Every ultraconnected space is path-connected (but not necessarily arc connected). If and are two points of and is a point in the intersection , the function defined by if , and if , is a continuous path between and .
Espace paracompactUn espace topologique est dit paracompact s'il est séparé et si tout recouvrement ouvert admet un raffinement (ouvert) localement fini. Cette définition a été introduite par le mathématicien français Jean Dieudonné en 1944. On rappelle qu'un recouvrement (X) d'un espace topologique X est dit localement fini si tout point de X possède un voisinage disjoint de presque tous les X, de tous sauf pour un ensemble fini d'indices i.
Anneau de valuation discrèteEn mathématiques, plus précisément en algèbre commutative, un anneau de valuation discrète est un anneau de valuation dont la valuation est discrète mais non triviale. Un anneau est de valuation discrète lorsqu'il est principal, qu'il ne possède qu'un idéal maximal, et que cet idéal est non nul. Cette notion est utilisée en théorie algébrique des nombres et en géométrie algébrique ; elle constitue un outil d'étude des anneaux noethériens, en particulier les anneaux de Dedekind.
Espace normalvignette|Un espace topologique séparé X est dit normal lorsque, pour tous fermés disjoints E et F de X, il existe des ouverts disjoints U et V tels que U contienne E et V, F. En mathématiques, un espace normal est un espace topologique vérifiant un axiome de séparation plus fort que la condition usuelle d'être un espace séparé. Cette définition est à la base de résultats comme le lemme d'Urysohn ou le théorème de prolongement de Tietze. Tout espace métrisable est normal. Soit X un espace topologique.
Espace localement compactEn topologie, un espace localement compact est un espace séparé qui admet des voisinages compacts pour tous ses points. Un tel espace n'est pas nécessairement compact lui-même mais on peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces compacts. Ce sont aussi les espaces qu'on peut « rendre » compacts avec un point grâce à la compactification d'Alexandrov. La compacité est une source très fertile de résultats en topologie mais elle reste une propriété très contraignante.
Topologie grossièreEn mathématiques et plus précisément en topologie, la topologie grossière (ou topologie triviale) associée à un ensemble X est la topologie sur X dont les seuls ouverts sont l'ensemble vide et X. Cette topologie est la moins fine de toutes les topologies qu'il est possible de définir sur un ensemble ; intuitivement, tous les points de l'espace topologique ainsi créé sont « groupés ensemble » et ne peuvent pas être distingués du point de vue topologique.
Espace à base dénombrableEn mathématiques, plus précisément en topologie, un espace est dit à base dénombrable si sa topologie admet une base dénombrable. La plupart des espaces usuels de l'analyse et beaucoup d'espaces en analyse fonctionnelle sont à base dénombrable. Tout espace à base dénombrable est à la fois séparable, à bases dénombrables de voisinages et de Lindelöf (en particulier, pour un espace à base dénombrable, les trois propriétés quasi-compact/dénombrablement compact/séquentiellement compact sont équivalentes).
Space (mathematics)In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions on another space, or subspaces of another space.