Topologie initialeEn mathématiques, plus précisément en topologie, la topologie initiale, sur un ensemble muni d'une famille d'applications à valeurs dans des espaces topologiques, est la topologie la moins fine pour laquelle toutes ces applications sont continues. Deux cas particuliers importants de topologies initiales sont la topologie induite et la topologie produit. La notion duale est celle de topologie finale. Soient X un ensemble et (fi)i∈I une famille d'applications, chacune définie sur X et à valeurs dans un espace topologique Yi.
Generic pointIn algebraic geometry, a generic point P of an algebraic variety X is, roughly speaking, a point at which all generic properties are true, a generic property being a property which is true for almost every point. In classical algebraic geometry, a generic point of an affine or projective algebraic variety of dimension d is a point such that the field generated by its coordinates has transcendence degree d over the field generated by the coefficients of the equations of the variety.
Excluded point topologyIn mathematics, the excluded point topology is a topology where exclusion of a particular point defines openness. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is then the excluded point topology on X. There are a variety of cases which are individually named: If X has two points, it is called the Sierpiński space. This case is somewhat special and is handled separately.
Continuité de ScottEn mathématiques pour l'informatique, étant donné deux ensembles partiellement ordonnés P et Q, une fonction f : P → Q entre eux est Scott-continue (du nom du mathématicien Dana Scott) si elle préserve tous les suprema dirigés, c'est-à-dire que pour chaque sous-ensemble orienté D de P avec supremum dans P, son a un supremum dans Q, et ce supremum est l'image du supremum de D, c'est-à-dire , où est la jointure dirigée.
Ultraconnected spaceIn mathematics, a topological space is said to be ultraconnected if no two nonempty closed sets are disjoint. Equivalently, a space is ultraconnected if and only if the closures of two distinct points always have non trivial intersection. Hence, no T1 space with more than one point is ultraconnected. Every ultraconnected space is path-connected (but not necessarily arc connected). If and are two points of and is a point in the intersection , the function defined by if , and if , is a continuous path between and .
Espace paracompactUn espace topologique est dit paracompact s'il est séparé et si tout recouvrement ouvert admet un raffinement (ouvert) localement fini. Cette définition a été introduite par le mathématicien français Jean Dieudonné en 1944. On rappelle qu'un recouvrement (X) d'un espace topologique X est dit localement fini si tout point de X possède un voisinage disjoint de presque tous les X, de tous sauf pour un ensemble fini d'indices i.
Anneau de valuation discrèteEn mathématiques, plus précisément en algèbre commutative, un anneau de valuation discrète est un anneau de valuation dont la valuation est discrète mais non triviale. Un anneau est de valuation discrète lorsqu'il est principal, qu'il ne possède qu'un idéal maximal, et que cet idéal est non nul. Cette notion est utilisée en théorie algébrique des nombres et en géométrie algébrique ; elle constitue un outil d'étude des anneaux noethériens, en particulier les anneaux de Dedekind.
Espace normalvignette|Un espace topologique séparé X est dit normal lorsque, pour tous fermés disjoints E et F de X, il existe des ouverts disjoints U et V tels que U contienne E et V, F. En mathématiques, un espace normal est un espace topologique vérifiant un axiome de séparation plus fort que la condition usuelle d'être un espace séparé. Cette définition est à la base de résultats comme le lemme d'Urysohn ou le théorème de prolongement de Tietze. Tout espace métrisable est normal. Soit X un espace topologique.
Space (mathematics)In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions on another space, or subspaces of another space.
Espace régulierEn mathématiques, un espace régulier est un espace topologique vérifiant les deux conditions de séparation suivantes : T : l'espace est séparé ; T : on peut séparer un point x et un fermé ne contenant pas x par deux ouverts disjoints. vignette|Le point x et le fermé F sont respectivement inclus dans les ouverts U et V, qui sont disjoints. Soit E un espace topologique (non nécessairement séparé).