In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature (typically zero), such that an initial unit of heat energy is placed at a point at time t = 0.
The most well-known heat kernel is the heat kernel of d-dimensional Euclidean space Rd, which has the form of a time-varying Gaussian function,
This solves the heat equation
for all t > 0 and x,y ∈ Rd, where Δ is the Laplace operator, with the initial condition
where δ is a Dirac delta distribution and the limit is taken in the sense of distributions. To wit, for every smooth function φ of compact support,
On a more general domain Ω in Rd, such an explicit formula is not generally possible. The next simplest cases of a disc or square involve, respectively, Bessel functions and Jacobi theta functions. Nevertheless, the heat kernel (for, say, the Dirichlet problem) still exists and is smooth for t > 0 on arbitrary domains and indeed on any Riemannian manifold with boundary, provided the boundary is sufficiently regular. More precisely, in these more general domains, the heat kernel for the Dirichlet problem is the solution of the initial boundary value problem
It is not difficult to derive a formal expression for the heat kernel on an arbitrary domain. Consider the Dirichlet problem in a connected domain (or manifold with boundary) U. Let λn be the eigenvalues for the Dirichlet problem of the Laplacian
Let φn denote the associated eigenfunctions, normalized to be orthonormal in L2(U). The inverse Dirichlet Laplacian Δ−1 is a compact and selfadjoint operator, and so the spectral theorem implies that the eigenvalues satisfy
The heat kernel has the following expression:
Formally differentiating the series under the sign of the summation shows that this should satisfy the heat equation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c
Techniques et théories de base pour les équations aux dérivées partielles d'évolution. Etude d'exemples fondamentaux: équations du premier ordre, équation des ondes, équation de la chaleur. Théorème d
This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, like in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios.
In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. As the prototypical parabolic partial differential equation, the heat equation is among the most widely studied topics in pure mathematics, and its analysis is regarded as fundamental to the broader field of partial differential equations.
Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its thermal conductivity, and is denoted k. Heat spontaneously flows along a temperature gradient (i.e. from a hotter body to a colder body). For example, heat is conducted from the hotplate of an electric stove to the bottom of a saucepan in contact with it.
Gossip algorithms and their accelerated versions have been studied exclusively in discrete time on graphs. In this work, we take a different approach and consider the scaling limit of gossip algorithms in both large graphs and large number of iterations. T ...
OXFORD UNIV PRESS2022
We study the rapid stabilization of the heat equation on the 1-dimensional torus using the backstepping method with a Fredholm transformation. This classical framework allows us to present the backstepping method with Fredholm transformations for the Lapla ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022
We present drozBot: le robot portraitiste, a robotic system that draws artistic portraits of people. The input images for the portrait are taken interactively by the robot itself. We formulate the problem of drawing portraits as a problem of coverage which ...