En mathématiques, le noyau de la chaleur est une fonction de Green (également appelée solution élémentaire) de l'équation de la chaleur sur un domaine spécifié, avec éventuellement des conditions aux limites appropriées. C'est aussi un des outils principaux de l'étude du spectre du laplacien. Le noyau de la chaleur représente l'évolution de la température égale à une unité de chaleur en un point au temps initial.
Le noyau de la chaleur dans l'espace libre Rd a pour expression
et est solution de l'équation de la chaleur
pour tout t > 0 et x,y ∈ Rd, avec la condition initiale
où δ est la distribution de Dirac et la limite est prise au sens des distributions, c'est-à-dire que pour toute fonction test φ
Soit un domaine compact de à bord . Sur ce domaine, on considère l'opérateur positif , où est le Laplacien, muni de conditions aux limites sur le bord du domaine (Dirichlet, Neumann, mixtes) qui fixent complètement le problème.
L'opérateur positif est le générateur d'un semi-groupe continu dans . On peut alors écrire pour toute fonction f de carré sommable :
La fonction K(x, y, t) est appelée le « noyau de la chaleur ». En effet, la fonction :
est clairement une solution de l'équation de la chaleur :
De plus, le semi-groupe tend vers l'identité lorsque le temps t tend vers zéro :
de telle sorte que le noyau de la chaleur K doit avoir le comportement asymptotique :
où est la distribution de Dirac. Ainsi, le noyau de la chaleur K(x, y, t) apparait comme étant une fonction de Green, ou solution élémentaire, de l'équation de la chaleur.
Lorsque le domaine est compact, l'opérateur positif possède un spectre discret de valeurs propres auquel est associée une base hilbertienne de vecteurs propres (on utilise ici les notations de Dirac) :
On peut alors écrire en introduisant deux fois la relation de fermeture :
qui devient :
La trace du noyau de la chaleur est définie par :
Les états propres étant orthonormés, on remarque que l'on peut écrire :
On a donc la relation fondamentale :
Cette relation est liée à de nombreuses « formules des traces » comme celle de Selberg en géométrie hyperbolique, ou celle de Gutzwiller à l'approximation semi-classique.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c
Techniques et théories de base pour les équations aux dérivées partielles d'évolution. Etude d'exemples fondamentaux: équations du premier ordre, équation des ondes, équation de la chaleur. Théorème d
This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative
La diffusion de la matière, ou diffusion chimique, désigne la tendance naturelle d'un système à rendre uniforme le potentiel chimique de chacune des espèces chimiques qu'il comporte. La diffusion chimique est un phénomène de transport irréversible qui tend à homogénéiser la composition du milieu. Dans le cas d'un mélange binaire et en l'absence des gradients de température et de pression, la diffusion se fait des régions de plus forte concentration vers les régions de concentration moindre.
En mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
La conduction thermique (ou diffusion thermique) est un mode de transfert thermique provoqué par une différence de température entre deux régions d'un même milieu, ou entre deux milieux en contact, et se réalisant sans déplacement global de matière (à l'échelle macroscopique) par opposition à la convection qui est un autre mode de transfert thermique. Elle peut s'interpréter comme la transmission de proche en proche de l'agitation thermique : un atome (ou une molécule) cède une partie de son énergie cinétique à l'atome voisin.
Gossip algorithms and their accelerated versions have been studied exclusively in discrete time on graphs. In this work, we take a different approach and consider the scaling limit of gossip algorithms in both large graphs and large number of iterations. T ...
OXFORD UNIV PRESS2022
We study the rapid stabilization of the heat equation on the 1-dimensional torus using the backstepping method with a Fredholm transformation. This classical framework allows us to present the backstepping method with Fredholm transformations for the Lapla ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022
We present drozBot: le robot portraitiste, a robotic system that draws artistic portraits of people. The input images for the portrait are taken interactively by the robot itself. We formulate the problem of drawing portraits as a problem of coverage which ...