In graph theory and computer science, an adjacency list is a collection of unordered lists used to represent a finite graph. Each unordered list within an adjacency list describes the set of neighbors of a particular vertex in the graph. This is one of several commonly used representations of graphs for use in computer programs.
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first class objects, and in what kinds of objects are used to represent the vertices and edges.
An implementation suggested by Guido van Rossum uses a hash table to associate each vertex in a graph with an array of adjacent vertices. In this representation, a vertex may be represented by any hashable object. There is no explicit representation of edges as objects.
Cormen et al. suggest an implementation in which the vertices are represented by index numbers. Their representation uses an array indexed by vertex number, in which the array cell for each vertex points to a singly linked list of the neighboring vertices of that vertex. In this representation, the nodes of the singly linked list may be interpreted as edge objects; however, they do not store the full information about each edge (they only store one of the two endpoints of the edge) and in undirected graphs there will be two different linked list nodes for each edge (one within the lists for each of the two endpoints of the edge).
The object oriented incidence list structure suggested by Goodrich and Tamassia has special classes of vertex objects and edge objects. Each vertex object has an instance variable pointing to a collection object that lists the neighboring edge objects. In turn, each edge object points to the two vertex objects at its endpoints.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph , denoted by , and the minimum degree of a graph, denoted by , are the maximum and minimum of its vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.
In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points), together with a set of unordered pairs of these vertices for an undirected graph or a set of ordered pairs for a directed graph. These pairs are known as edges (also called links or lines), and for a directed graph are also known as edges but also sometimes arrows or arcs.
In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge. The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v. The neighbourhood is often denoted N_G (v) or (when the graph is unambiguous) N(v). The same neighbourhood notation may also be used to refer to sets of adjacent vertices rather than the corresponding induced subgraphs.
In this paper, we study the problem of learning Graph Neural Networks (GNNs) with Differential Privacy (DP). We propose a novel differentially private GNN based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN's aggregation functio ...
The thesis develops a planning framework for ADNs to achieve their dispatchability by means of ESS allocation while ensuring a reliable and secure operation of ADNs. Second, the framework is extended to include grid reinforcements and ESSs planning. Finall ...
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods, which often lead to locally optimal solutions and require heavy online inference time consumption. To improve the quality of the solution and r ...