In algebraic geometry, a geometric quotient of an algebraic variety X with the action of an algebraic group G is a morphism of varieties such that (i) For each y in Y, the fiber is an orbit of G. (ii) The topology of Y is the quotient topology: a subset is open if and only if is open. (iii) For any open subset , is an isomorphism. (Here, k is the base field.) The notion appears in geometric invariant theory. (i), (ii) say that Y is an orbit space of X in topology. (iii) may also be phrased as an isomorphism of sheaves . In particular, if X is irreducible, then so is Y and : rational functions on Y may be viewed as invariant rational functions on X (i.e., rational-invariants of X). For example, if H is a closed subgroup of G, then is a geometric quotient. A GIT quotient may or may not be a geometric quotient: but both are categorical quotients, which is unique; in other words, one cannot have both types of quotients (without them being the same). A geometric quotient is a categorical quotient. This is proved in Mumford's geometric invariant theory. A geometric quotient is precisely a good quotient whose fibers are orbits of the group. The canonical map is a geometric quotient. If L is a linearized line bundle on an algebraic G-variety X, then, writing for the set of stable points with respect to L, the quotient is a geometric quotient.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MATH-211: Algebra II - groups
This course deals with group theory, with particular emphasis on group actions and notions of category theory.
Related lectures (3)
Proper Actions and Quotients
Covers proper actions of groups on Riemann surfaces and introduces algebraic curves via square roots.
Show more
Related publications (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.