In algebraic geometry, a geometric quotient of an algebraic variety X with the action of an algebraic group G is a morphism of varieties such that (i) For each y in Y, the fiber is an orbit of G. (ii) The topology of Y is the quotient topology: a subset is open if and only if is open. (iii) For any open subset , is an isomorphism. (Here, k is the base field.) The notion appears in geometric invariant theory. (i), (ii) say that Y is an orbit space of X in topology. (iii) may also be phrased as an isomorphism of sheaves . In particular, if X is irreducible, then so is Y and : rational functions on Y may be viewed as invariant rational functions on X (i.e., rational-invariants of X). For example, if H is a closed subgroup of G, then is a geometric quotient. A GIT quotient may or may not be a geometric quotient: but both are categorical quotients, which is unique; in other words, one cannot have both types of quotients (without them being the same). A geometric quotient is a categorical quotient. This is proved in Mumford's geometric invariant theory. A geometric quotient is precisely a good quotient whose fibers are orbits of the group. The canonical map is a geometric quotient. If L is a linearized line bundle on an algebraic G-variety X, then, writing for the set of stable points with respect to L, the quotient is a geometric quotient.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.