Antipodal pointIn mathematics, two points of a sphere (or n-sphere, including a circle) are called antipodal or diametrically opposite if they are the intersections of the sphere with a diameter, a straight line passing through its center. Given any point on a sphere, its antipodal point is the unique point at greatest distance, whether measured intrinsically (great-circle distance on the surface of the sphere) or extrinsically (chordal distance through the sphere's interior).
Sphere packingIn geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions (where the problem becomes circle packing in two dimensions, or hypersphere packing in higher dimensions) or to non-Euclidean spaces such as hyperbolic space.
Alexandroff extensionIn the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞.
Suspension (topology)In topology, a branch of mathematics, the suspension of a topological space X is intuitively obtained by stretching X into a cylinder and then collapsing both end faces to points. One views X as "suspended" between these end points. The suspension of X is denoted by SX or susp(X). There is a variation of the suspension for pointed space, which is called the reduced suspension and denoted by ΣX. The "usual" suspension SX is sometimes called the unreduced suspension, unbased suspension, or free suspension of X, to distinguish it from ΣX.
Volume of an n-ballIn geometry, a ball is a region in a space comprising all points within a fixed distance, called the radius, from a given point; that is, it is the region enclosed by a sphere or hypersphere. An n-ball is a ball in an n-dimensional Euclidean space. The volume of a n-ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a n-ball of radius R is where is the volume of the unit n-ball, the n-ball of radius 1.
Quaternionic projective spaceIn mathematics, quaternionic projective space is an extension of the ideas of real projective space and complex projective space, to the case where coordinates lie in the ring of quaternions Quaternionic projective space of dimension n is usually denoted by and is a closed manifold of (real) dimension 4n. It is a homogeneous space for a Lie group action, in more than one way. The quaternionic projective line is homeomorphic to the 4-sphere. Its direct construction is as a special case of the projective space over a division algebra.
Double factorialIn mathematics, the double factorial of a number n, denoted by n!!, is the product of all the positive integers up to n that have the same parity (odd or even) as n. That is, Restated, this says that for even n, the double factorial is while for odd n it is For example, 9!! = 9 × 7 × 5 × 3 × 1 = 945. The zero double factorial 0!! = 1 as an empty product. The sequence of double factorials for even n = 0, 2, 4, 6, 8,... starts as The sequence of double factorials for odd n = 1, 3, 5, 7, 9,...
Zero-dimensional spaceIn mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a nildimensional space is a point. Specifically: A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets.
Max DehnMax Wilhelm Dehn (November 13, 1878 – June 27, 1952) was a German mathematician most famous for his work in geometry, topology and geometric group theory. Dehn's early life and career took place in Germany. However, he was forced to retire in 1935 and eventually fled Germany in 1939 and emigrated to the United States. Dehn was a student of David Hilbert, and in his habilitation in 1900 Dehn resolved Hilbert's third problem, making him the first to resolve one of Hilbert's well-known 23 problems.
Homology sphereIn algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer . That is, and for all other i. Therefore X is a connected space, with one non-zero higher Betti number, namely, . It does not follow that X is simply connected, only that its fundamental group is perfect (see Hurewicz theorem). A rational homology sphere is defined similarly but using homology with rational coefficients.