In algorithmic information theory, algorithmic probability, also known as Solomonoff probability, is a mathematical method of assigning a prior probability to a given observation. It was invented by Ray Solomonoff in the 1960s. It is used in inductive inference theory and analyses of algorithms. In his general theory of inductive inference, Solomonoff uses the method together with Bayes' rule to obtain probabilities of prediction for an algorithm's future outputs. In the mathematical formalism used, the observations have the form of finite binary strings viewed as outputs of Turing machines, and the universal prior is a probability distribution over the set of finite binary strings calculated from a probability distribution over programs (that is, inputs to a universal Turing machine). The prior is universal in the Turing-computability sense, i.e. no string has zero probability. It is not computable, but it can be approximated. Algorithmic probability is the main ingredient of Solomonoff's theory of inductive inference, the theory of prediction based on observations; it was invented with the goal of using it for machine learning; given a sequence of symbols, which one will come next? Solomonoff's theory provides an answer that is optimal in a certain sense, although it is incomputable. Unlike, for example, Karl Popper's informal inductive inference theory, Solomonoff's is mathematically rigorous. Four principal inspirations for Solomonoff's algorithmic probability were: Occam's razor, Epicurus' principle of multiple explanations, modern computing theory (e.g. use of a universal Turing machine) and Bayes’ rule for prediction. Occam's razor and Epicurus' principle are essentially two different non-mathematical approximations of the universal prior. Occam's razor: among the theories that are consistent with the observed phenomena, one should select the simplest theory. Epicurus' principle of multiple explanations: if more than one theory is consistent with the observations, keep all such theories.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.