In mathematics the Petersson inner product is an inner product defined on the space
of entire modular forms. It was introduced by the German mathematician Hans Petersson.
Let be the space of entire modular forms of weight and
the space of cusp forms.
The mapping ,
is called Petersson inner product, where
is a fundamental region of the modular group and for
is the hyperbolic volume form.
The integral is absolutely convergent and the Petersson inner product is a positive definite Hermitian form.
For the Hecke operators , and for forms of level , we have:
This can be used to show that the space of cusp forms of level has an orthonormal basis consisting of
simultaneous eigenfunctions for the Hecke operators and the Fourier coefficients of these
forms are all real.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a modular form is a (complex) analytic function on the upper half-plane that satisfies: a kind of functional equation with respect to the group action of the modular group, and a growth condition. The theory of modular forms therefore belongs to complex analysis. The main importance of the theory is its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory.
In this thesis we study algebraic cycles on Shimura varieties of orthogonal type. Such varieties are a higher dimensional generalization of modular curves and their important feature is that they have natural families of algebraic cycles in all codimesions ...
In this paper we study the regularized Petersson product between a holomorphic theta series associated to a positive definite binary quadratic form and a weakly holomorphic weight-one modular form with integral Fourier coefficients. In [18], we proved that ...
Higher Green functions are real-valued functions of two variables on the upper half-plane, which are bi-invariant under the action of a congruence subgroup, have a logarithmic singularity along the diagonal, and satisfy the equation f = k(1−k) f ; here i ...