Publication

CM values of higher Green's functions and regularized Petersson products

Maryna Viazovska
2015
Conference paper
Abstract

Higher Green functions are real-valued functions of two variables on the upper half-plane, which are bi-invariant under the action of a congruence subgroup, have a logarithmic singularity along the diagonal, and satisfy the equation f = k(1−k) f ; here is a hyperbolic Laplace operator and k is a positive integer. The significant arithmetic properties of these functions were disclosed in the paper of B. Gross and D. Zagier “Heegner points and derivatives of L series” (1986). In the particular case when k = 2 and one of the CM points is equal to √−1, the conjecture has been proved by A. Mellit in his Ph.D. thesis. In this lecture we prove that conjecture for arbitrary k, assuming that all the pairs of CM points lie in the same quadratic field. The two main parts of the proof are as follows. We first show that the regularized Petersson scalar product of a binary theta-series and a weight one weakly holomorphic cusp form is equal to the logarithm of the absolute value of an algebraic integer and then prove that the special values of weight k Green’s function, occurring in the conjecture of Gross and Zagier, can be written as the Petersson product of that type, where the form of weight one is the k − 1st Rankin-Cohen bracket of an explicitly given holomorphic modular form of weight 2 − 2k and a binary theta-series. Algebraicity of regularized Petersson products was also proved at about the same time by W. Duke and Y. Li by a different method; however, our result is stronger since we also give a formula for the factorization of the algebraic number in question.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (55)
Modular form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane that satisfies: a kind of functional equation with respect to the group action of the modular group, and a growth condition. The theory of modular forms therefore belongs to complex analysis. The main importance of the theory is its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory.
Quadratic integer
In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form x2 + bx + c = 0 with b and c (usual) integers. When algebraic integers are considered, the usual integers are often called rational integers. Common examples of quadratic integers are the square roots of rational integers, such as , and the complex number i = , which generates the Gaussian integers.
Algebraic integer
In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers. The ring of integers of a number field K, denoted by OK, is the intersection of K and A: it can also be characterised as the maximal order of the field K.
Show more
Related publications (89)

Additive and geometric transversality of fractal sets in the integers

Florian Karl Richter

By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we in ...
2024

Toroidal families and averages of L-functions, I

Philippe Michel

We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...
Polish Acad Sciences Inst Mathematics-Impan2024

The Environment, constant or variable?

Vasileios Chanis

The presentation delves into the significance of the concept of the Environment in Architecture, examining whether the term could be construed as a constant or a variable. Supported by a series of examples from the Alpine context, it seeks to illuminate th ...
2024
Show more
Related MOOCs (23)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.