Summary
Deposition is the geological process in which sediments, soil and rocks are added to a landform or landmass. Wind, ice, water, and gravity transport previously weathered surface material, which, at the loss of enough kinetic energy in the fluid, is deposited, building up layers of sediment. This thing occurs occurs when the forces responsible for sediment transportation are no longer sufficient to overcome the forces of gravity and friction, creating a resistance to motion; this is known as the null-point hypothesis. Deposition can also refer to the buildup of sediment from organically derived matter or chemical processes. For example, chalk is made up partly of the microscopic calcium carbonate skeletons of marine plankton, the deposition of which has induced chemical processes (diagenesis) to deposit further calcium carbonate. Similarly, the formation of coal begins with the deposition of organic material, mainly from plants, in anaerobic conditions. The null-point hypothesis explains how sediment is deposited throughout a shore profile according to its grain size. This is due to the influence of hydraulic energy, resulting in a seaward-fining of sediment particle size, or where fluid forcing equals gravity for each grain size. The concept can also be explained as "sediment of a particular size may move across the profile to a position where it is in equilibrium with the wave and flows acting on that sediment grain". This sorting mechanism combines the influence of the down-slope gravitational force of the profile and forces due to flow asymmetry; the position where there is zero net transport is known as the null point and was first proposed by Cornaglia in 1889. Figure 1 illustrates this relationship between sediment grain size and the depth of the marine environment. The first principle underlying the null point theory is due to the gravitational force; finer sediments remain in the water column for longer durations allowing transportation outside the surf zone to deposit under calmer conditions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.