In mathematics, especially in algebraic topology, the homotopy limit and colimitpg 52 are variants of the notions of and colimit extended to the homotopy category . The main idea is this: if we have a diagramconsidered as an object in the , (where the homotopy equivalence of diagrams is considered pointwise), then the homotopy limit and colimits then correspond to the and coconewhich are objects in the homotopy category , where is the category with one object and one morphism. Note this category is equivalent to the standard homotopy category since the latter homotopy functor category has functors which picks out an object in and a natural transformation corresponds to a continuous function of topological spaces. Note this construction can be generalized to model categories, which give techniques for constructing homotopy limits and colimits in terms of other homotopy categories, such as . Another perspective formalizing these kinds of constructions are derivatorspg 193 which are a new framework for homotopical algebra.
The concept of homotopy colimitpg 4-8 is a generalization of homotopy pushouts, such as the mapping cylinder used to define a cofibration. This notion is motivated by the following observation: the (ordinary)
is the space obtained by contracting the n-1-sphere (which is the boundary of the n-dimensional disk) to a single point. This space is homeomorphic to the n-sphere Sn. On the other hand, the pushout
is a point. Therefore, even though the (contractible) disk Dn was replaced by a point, (which is homotopy equivalent to the disk), the two pushouts are not homotopy (or weakly) equivalent.
Therefore, the pushout is not well-aligned with a principle of homotopy theory, which considers weakly equivalent spaces as carrying the same information: if one (or more) of the spaces used to form the pushout is replaced by a weakly equivalent space, the pushout is not guaranteed to stay weakly equivalent. The homotopy pushout rectifies this defect.
The homotopy pushout of two maps of topological spaces is defined as
i.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Discusses group actions, quotients, and homomorphisms, emphasizing practical implications for various groups and the construction of complex projective spaces.
We apply the Acyclicity Theorem of Hess, Kedziorek, Riehl, and Shipley (recently corrected by Garner, Kedziorek, and Riehl) to establishing the existence of model category structure on categories of coalgebras over comonads arising from simplicial adjuncti ...
In this thesis, we study the homotopical relations of 2-categories, double categories, and their infinity-analogues. For this, we construct homotopy theories for the objects of interest, and show that there are homotopically full embeddings of 2-categories ...
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
In mathematics, especially homotopy theory, the mapping cone is a construction of topology, analogous to a quotient space. It is also called the homotopy cofiber, and also notated . Its dual, a fibration, is called the mapping fibre. The mapping cone can be understood to be a mapping cylinder , with one end of the cylinder collapsed to a point. Thus, mapping cones are frequently applied in the homotopy theory of pointed spaces. Given a map , the mapping cone is defined to be the quotient space of the mapping cylinder with respect to the equivalence relation , .
In mathematics, in particular homotopy theory, a continuous mapping between topological spaces is a cofibration if it has the homotopy extension property with respect to all topological spaces . That is, is a cofibration if for each topological space , and for any continuous maps and with , for any homotopy from to , there is a continuous map and a homotopy from to such that for all and . (Here, denotes the unit interval .
In mathematics, particularly in homotopy theory, a model category is a with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes ( theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic K-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results.