**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# The Homotopy Theory Of Coalgebras Over Simplicial Comonads

Abstract

We apply the Acyclicity Theorem of Hess, Kedziorek, Riehl, and Shipley (recently corrected by Garner, Kedziorek, and Riehl) to establishing the existence of model category structure on categories of coalgebras over comonads arising from simplicial adjunctions, under mild conditions on the adjunction and the associated comonad. We study three concrete examples of such adjunctions where the left adjoint is comonadic and show that in each case the component of the derived counit of the comparison adjunction at any fibrant object is an isomorphism, while the component of the derived unit at any 1-connected object is a weak equivalence. To prove this last result, we explain how to construct explicit fibrant replacements for 1-connected coalgebras in the image of the canonical comparison functor from the Postnikov decompositions of their underlying simplicial sets. We also show in one case that the derived unit is precisely the Bousfield-Kan completion map.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (40)

Related concepts (40)

Ontological neighbourhood

Model category

In mathematics, particularly in homotopy theory, a model category is a with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes ( theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic K-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results.

Simplicial set

In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and . Formally, a simplicial set may be defined as a contravariant functor from the to the . Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization.

Kan fibration

In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. For each n ≥ 0, recall that the , , is the representable simplicial set Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard -simplex: the convex subspace of Rn+1 consisting of all points such that the coordinates are non-negative and sum to 1.

Kathryn Hess Bellwald, Inbar Klang

Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category V, as ...

In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...

We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...