In telecommunications, a collinear antenna array (sometimes colinear antenna array) is an array of dipole or quarter-wave antennas mounted in such a manner that the corresponding elements of each antenna are parallel and collinear; that is, they are located along a common axis.
Collinear arrays are high gain omnidirectional antennas. Both dipoles and quarter-wavelength monopoles have an omnidirectional radiation pattern in free space when oriented vertically; they radiate equal radio power in all azimuthal directions perpendicular to the antenna, with the signal strength dropping to zero on the antenna axis. The purpose of stacking multiple antennas in a vertical collinear array is to increase the power radiated in horizontal directions and reduce the power radiated into the sky or down toward the earth, where it is wasted. They radiate vertically polarized radio waves. Theoretically, when stacking idealized lossless antennas in such a fashion, doubling their number will produce double the gain, with an increase of 3.01 dB. In practice, the gain realized will be below this due to imperfect radiation spread and losses.
Collinear arrays are frequently constructed as a stack of dipoles, but can also be constructed as a stack of phased quarter-wave antennas. In this configuration, the individual radiators within the array are often constructed of coaxial feedlines with the center conductor of one element being connected electrically to the shield of the one above, and so on in alternating phase for as many elements are specified by gain or overall length requirements. The final or 'top' element in the stack is a quarter-wave radiator connected directly to the center conductor of the element below it. This style of collinear antenna is usually housed in a fiberglass radome, to provide both support and environmental protection to the relatively fragile coaxial elements.
A third type of collinear array, rarely seen outside of amateur radio VHF/UHF applications, uses half-wavelength monopole elements with phasing coils between each consecutive pair of elements to achieve the necessary phase shift.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation
An antenna array (or array antenna) is a set of multiple connected antennas which work together as a single antenna, to transmit or receive radio waves. The individual antennas (called elements) are usually connected to a single receiver or transmitter by feedlines that feed the power to the elements in a specific phase relationship. The radio waves radiated by each individual antenna combine and superpose, adding together (interfering constructively) to enhance the power radiated in desired directions, and cancelling (interfering destructively) to reduce the power radiated in other directions.
In radio engineering, an antenna (American English) or aerial (British English) is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves (radio waves). In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified.
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
The transformation of the automotive industry towards ubiquitous connection of vehicles with all kind of external agents (V2X) motivates the use of a wide range of frequencies for several applications. Millimeter-wave (mmWave) connectivity represents a par ...
The integration of the new plasma position reflectometer in the RFX-mod2 experiment (the upgraded version of the previous RFX-mod that operated until 2015) is presented in this contribution. Particular attention has been devoted to the high field side subs ...
Lausanne2024
In this paper, we analyze the integration of small antennas in a drone protected by a conductive structure. They must be light and resistant to provide high collision resilience, which is critical for drones flown indoors and in complex environments. To ac ...