In telecommunication and signal processing, companding (occasionally called compansion) is a method of mitigating the detrimental effects of a channel with limited dynamic range. The name is a portmanteau of the words compressing and expanding, which are the functions of a compander at the transmitting and receiving ends, respectively. The use of companding allows signals with a large dynamic range to be transmitted over facilities that have a smaller dynamic range capability. Companding is employed in telephony and other audio applications such as professional wireless microphones and analog recording. The dynamic range of a signal is compressed before transmission and is expanded to the original value at the receiver. The electronic circuit that does this is called a compander and works by compressing or expanding the dynamic range of an analog electronic signal such as sound recorded by a microphone. One variety is a triplet of amplifiers: a logarithmic amplifier, followed by a variable-gain linear amplifier and an exponential amplifier. Such a triplet has the property that its output voltage is proportional to the input voltage raised to an adjustable power. Companded quantization is the combination of three functional building blocks – namely, a (continuous-domain) signal dynamic range compressor, a limited-range uniform quantizer, and a (continuous-domain) signal dynamic range expander that inverts the compressor function. This type of quantization is frequently used in telephony systems. In practice, companders are designed to operate according to relatively simple dynamic range compressor functions that are suitable for implementation as simple analog electronic circuits. The two most popular compander functions used for telecommunications are the A-law and μ-law functions. Companding is used in digital telephony systems, compressing before input to an analog-to-digital converter, and then expanding after a digital-to-analog converter. This is equivalent to using a non-linear ADC as in a T-carrier telephone system that implements A-law or μ-law companding.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.