A corner reflector is a retroreflector consisting of three mutually perpendicular, intersecting flat surfaces, which reflects waves directly towards the source, but translated. The three intersecting surfaces often have square shapes. Radar corner reflectors made of metal are used to reflect radio waves from radar sets. Optical corner reflectors, called corner cubes or cube corners, made of three-sided glass prisms, are used in surveying and laser ranging.
The incoming ray is reflected three times, once by each surface, which results in a reversal of direction. To see this, the three corresponding normal vectors of the corner's perpendicular sides can be considered to form a basis (a rectangular coordinate system) (x, y, z) in which to represent the direction of an arbitrary incoming ray, . When the ray reflects from the first side, say x, the ray's x component, a, is reversed to −a while the y and z components are unchanged, resulting in a direction of . Similarly, when reflected from side y and finally from side z, the b and c components are reversed. Therefore, the ray direction goes from to to to , and it leaves the corner reflector with all three components of direction exactly reversed. The distance travelled, relative to a plane normal to the direction of the rays, is also equal for any ray entering the reflector, regardless of the location where it first reflects.
Radar corner reflectors are designed to reflect the microwave radio waves emitted by radar sets back toward the radar antenna. This causes them to show a strong "return" on radar screens. A simple corner reflector consists of three conducting sheet metal or screen surfaces at 90° angles to each other, attached to one another at the edges, forming a "corner". These reflect radio waves coming from in front of them back parallel to the incoming beam. To create a corner reflector that will reflect radar waves coming from any direction, 8 corner reflectors are placed back-to-back in an octahedron (diamond) shape.